
Formal Design and Veri�cation of a

Reliable Computing Platform For

Real-Time Control

Phase 2 Results

Ricky W. Butler

Ben L. Di Vito

February 27, 1992



Contents

1 Introduction 1

1.1 Design of the Reliable Computing Platform : : : : : : : : : : : : : : : : : : 2

1.2 Overview of Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4

1.3 Previous E�orts : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

2 Speci�cation Hierarchy and Veri�cation Approach 6

2.1 The State Machine Approach to Speci�cation : : : : : : : : : : : : : : : : : 6

2.2 Specifying Behavior in the Presence Of Faults : : : : : : : : : : : : : : : : : 7

2.3 The Speci�cation Hierarchy : : : : : : : : : : : : : : : : : : : : : : : : : : : 8

2.4 Extended State Machine Model : : : : : : : : : : : : : : : : : : : : : : : : : 10

2.5 The Proof Method : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11

3 US/RS Speci�cation 13

3.1 Preliminary De�nitions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

3.2 US Speci�cation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14

3.3 RS Speci�cation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14

3.4 Actuator Outputs : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17

3.5 Generic Fault-Tolerant Computing : : : : : : : : : : : : : : : : : : : : : : : 18

3.5.1 State Model for Transient Fault Recovery : : : : : : : : : : : : : : : : 18

3.5.2 Transient Recovery Axioms : : : : : : : : : : : : : : : : : : : : : : : 19

3.5.3 Sample Interpretations of Theory : : : : : : : : : : : : : : : : : : : : 21

4 RS to US Proof 22

5 DS Speci�cation 24

6 DS to RS Proof 28

6.1 DS to RS Mapping : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 29

6.2 The Proof : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 30

7 DA Speci�cation 32

7.1 Clock Synchronization Theory : : : : : : : : : : : : : : : : : : : : : : : : : : 33

7.2 The DA Formalization : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 36

8 DA to DS Proof 42

8.1 DA to DS Mapping : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 42

8.2 The Proof : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 43

8.2.1 Decomposition Scheme : : : : : : : : : : : : : : : : : : : : : : : : : : 43

8.2.2 Proof of com broadcast 2 : : : : : : : : : : : : : : : : : : : : : : : : : 44

9 Implementation Considerations 48

9.1 Restrictions Imposed by the DA Model : : : : : : : : : : : : : : : : : : : : : 48

9.2 Processor Scheduling : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 49

9.3 Hardware Protection Features : : : : : : : : : : : : : : : : : : : : : : : : : : 50

i



9.4 Voting Mechanisms : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 51

10 Future Work 52

10.1 Further Re�nement : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 52

10.2 Task Scheduling and Voting : : : : : : : : : : : : : : : : : : : : : : : : : : : 54

10.3 Actuator Outputs : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 54

10.4 Development of a Detailed Reliability Model : : : : : : : : : : : : : : : : : : 54

11 Concluding Remarks 54

A Appendix | LaTEX-printed Speci�cation Listings 62

B Appendix | LaTEX-printed Supplementary Speci�cation Listings 108

C Appendix | Results of Proof Chain Analysis 115

ii



Abstract

In this paper the design and formal veri�cation of the Reliable Computing Plat-

form (RCP), a fault-tolerant computing system for digital 
ight control appli-

cations, are presented. The RCP utilizes NMR-style redundancy to mask faults

and internal majority voting to 
ush the e�ects of transient faults. The system

is formally speci�ed and veri�ed using the Ehdm veri�cation system. A major

goal of this work is to provide the system with signi�cant capability to withstand

the e�ects of High Intensity Radiated Fields (HIRF).



1 Introduction

NASA is engaged in a major research e�ort towards the development of a practical validation

and veri�cation methodology for digital 
y-by-wire control systems.1 Researchers at NASA

Langley Research Center (LaRC) are exploring formal veri�cation as a candidate technology

for the elimination of design errors in such systems. In previous reports [1, 2, 3], we put

forward a high level architecture for a reliable computing platform (RCP) based on fault-

tolerant computing principles. Central to this work is the use of formal methods for the

veri�cation of a fault-tolerant operating system that schedules and executes the application

tasks of a digital 
ight control system. Phase 1 of this e�ort established results about the

high level design of RCP. This report presents our Phase 2 results, which carry the design,

speci�cation, and veri�cation of RCP to lower levels of abstraction.

The major goal of this work is to produce a veri�ed real-time computing platform, both

hardware and operating system software, which is useful for a wide variety of control-system

applications. Toward this goal, the operating system provides a user interface that \hides"

the implementation details of the system such as the redundant processors, voting, clock

synchronization, etc. We adopt a very abstract model of real-time computation, introduce

three levels of decomposition of the model towards a physical realization, and rigorously

prove that the decomposition correctly implements the model. Speci�cations and proofs

have been mechanized using the Ehdm veri�cation system [4].

A major goal of the RCP design is to enable the system to recover from the e�ects of

transient faults. More than their analog predecessors, digital 
ight control systems are vul-

nerable to external phenomena that can temporarily a�ect the system without permanently

damaging the physical hardware. External phenomena such as electromagnetic interference

(EMI) can 
ip the bits in a processor's memory or temporarily a�ect an ALU. EMI can

come from many sources such as cosmic radiation, lightning or High Intensity Radiated

Fields (HIRF). There is growing concern over the e�ects of HIRF on 
ight control systems.

In the FAA Digital Systems Validation Handbook { volume II [5], we �nd:

A number of European military aircraft fatal accidents have been attributed to

High Energy Radio Frequency (HERF).2 A digital 
y-by-wire military Tornado

aircraft and crew were lost during a tactical training stra�ng attack in Germany.

The loss was attributed to HERF when the aircraft 
ew through a high intensity

Radio Frequency (RF) �eld. The civil/military aviation industry has very limited

experience or data directed to accidents caused by electromagnetic transients

and/or radiation. The present criteria, speci�cations, and procedures are being

reevaluated. The HERF �elds apparently upset the digital 
ight control system

of the Tornado which was quali�ed to a very low electromagnetic Environment

(EME) standard.

While composite materials may o�er signi�cant advantages in strength, weight,

and cost, they provide less electromagnetic shielding than aluminum. The use

1In 
y-by-wire aircraft the direct mechanical and hydraulic linkages between the pilot and actuators of
the system are replaced with digital computers. These digital computers are being used to control life critical
functions such as the engines, sensors, fuel systems and actuators.

2The term HERF has largely been replaced in current usage by the newer term HIRF.
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of solid-state digital technology in 
ight-critical systems create major challenges

to prevent transient susceptibility and upset in both civil and military aircraft.

Therefore, the Civil Aviation Authority (CAA), United Kingdom (U.K.) and

the Federal Aviation Administration (FAA), United States (U.S.) voiced concern

relative to emerging technology aircraft and systems.

The RCP system is designed to automatically 
ush the e�ects of transients periodically, as

long as the e�ect of a transient is not massive, that is, simultaneously a�ecting a majority

of the redundant processors in the system.3 Of course, there is no hope of recovery if the

system designed to overcome transient faults contains a design 
aw. Consequently, a major

emphasis in this work has been the development of techniques that mathematically show

when the desired recovery properties have been achieved. The advantages of this approach

are signi�cant:

� Con�dence in the system does not rely primarily on end-to-end testing, which can

never establish the absence of some rare design 
aw (yet more frequent than 10�9 [6])

that can crash the system [7].

� Minimizes the need for experimental analysis of the e�ects of EMI or HIRF on a digital

processor. The probability of occurrence of a transient fault must be experimentally

determined, but it is not necessary to obtain detailed information about how a transient

fault propagates errors in a digital processor.

� The role of experimentation is determined by the assumptions of the mathematical

veri�cation. The testing of the system can be concentrated at the regions where the

design proofs interface with the physical implementation.

1.1 Design of the Reliable Computing Platform

Traditionally, the operating system function in 
ight control systems has been implemented

as an executive (or main program) that invokes subroutines implementing the application

tasks. For ultra-reliable systems, the additional responsibility of providing fault tolerance

and undergoing validation makes this approach questionable. We propose a well-de�ned

operating system that provides the applications software developer a reliable mechanism for

dispatching periodic tasks on a fault-tolerant computing base that appears to him as a single

ultra-reliable processor.

Our system design objective is to minimize the amount of experimental testing required

and maximize our ability to reason mathematically about correctness. The following design

decisions have been made toward that end:

� the system is non-recon�gurable

� the system is frame-synchronous

� the scheduling is static, non-preemptive

� internal voting is used to recover the state of a processor a�ected by a transient fault

3Future work will concentrate on the massive transient and techniques to detect and restart a massively
upset system.
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Uniprocessor System Model (US)

j

Fault-tolerant Replicated Synchronous Model (RS)
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Fault-tolerant Distributed Asynchronous Model (DA)

j

Hardware/Software Implementation

Figure 1: Hierarchical Speci�cation of the Reliable Computing Platform.

A four-level hierarchical decomposition of the reliable computing platform is shown in �g-

ure 1.

The top level of the hierarchy describes the operating system as a function that sequen-

tially invokes application tasks. This view of the operating system will be referred to as the

uniprocessor model, which is formalized as a state transition system in section 3.2 and forms

the basis of the speci�cation for the RCP.

Fault tolerance is achieved by voting results computed by the replicated processors op-

erating on the same inputs. Interactive consistency checks on sensor inputs and voting of

actuator outputs require synchronization of the replicated processors. The second level in

the hierarchy describes the operating system as a synchronous system where each replicated

processor executes the same application tasks. The existence of a global time base, an in-

teractive consistency mechanism and a reliable voting mechanism are assumed at this level.

The formal details of the model, speci�ed as a state transition system, are described in

section 3.3.

Although not anticipated during the Phase 1 e�ort, another layer of re�nement was in-

serted before the introduction of asynchrony. Level 3 of the hierarchy breaks a frame into

four sequential phases. This allows a more explicit modeling of interprocessor communication

and the time phasing of computation, communication, and voting. The use of this interme-

diate model avoids introducing these issues along with those of real time, thus preventing

an overload of details in the proof process.

At the fourth level, the assumptions of the synchronous model must be discharged.

Rushby and von Henke [8] report on the formal veri�cation of Lamport and Melliar-Smith's

[9] interactive-convergence clock synchronization algorithm. This algorithm can serve as a

foundation for the implementation of the replicated system as a collection of asynchronously

operating processors. Dedicated hardware implementations of the clock synchronization

function are a long-term goal.

Final realization of the reliable computing platform is the subject of the Phase 3 e�ort.

The research activity will culminate in a detailed design and prototype implementation.
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Figure 2: Generic hardware architecture.

Figure 2 depicts the generic hardware architecture assumed for implementing the replicated

system. Single-source sensor inputs are distributed by special purpose hardware executing

a Byzantine agreement algorithm. Replicated actuator outputs are all delivered in parallel

to the actuators, where force-sum voting occurs. Interprocessor communication links allow

replicated processors to exchange and vote on the results of task computations. As previously

suggested, clock synchronization hardware may be added to the architecture as well.

1.2 Overview of Results

Before presenting the complete details, we provide an overview of the major formalizations

and results for the reliable computing platform. In accordance with accepted terminology,

we consider a fault to be a condition in which a piece of hardware is not operating within

its speci�cations due to physical malfunction, and an error to be an incorrect computation

result or system output. When a fault occurs, errors may or may not be produced. Although

fault-tolerant architectures o�er a high degree of immunity from hardware faults, there is a

limit to how many simultaneous faults can be tolerated. Unless this limit is exceeded during

system operation, the system will mask the occurrence of errors so that the system as a

whole produces no computation errors. If the limit is exceeded, however, the system might

produce erroneous results.
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The primary mechanism for tolerating faults is voting of redundant computation results.

Voting can take place at a number of locations in the system and associated with each choice

are various tradeo�s. If voting occurs only at the actuators and the internal state of the

system (contained in volatilememory) is never subjected to a vote, a single transient fault can

permanently corrupt the state of a good processor. This is an unacceptable approach since

�eld data indicates that transient faults are signi�cantly more likely than permanent faults

[10]. An alternative voting strategy is to vote the entire system state at frequent intervals.

This approach quickly purges the e�ects of transient faults from the system; however, the

computational overhead for this approach may be prohibitive. There is a trade-o� between

the rate of recovery from transient faults and the frequency of voting. The more frequent the

voting, the faster the recovery from transients, but at the price of increased computational

overhead. We observe that voting need only occur for a system state that is not recoverable

from sensor inputs. A sparse voting approach can accomplish recovery from the e�ects of

transient faults at greatly reduced overhead, but involves increased design complexity. The

formal models presented here provide an abstract characterization of the voting requirements

for a fault-tolerant system that purges the e�ects of transient faults.

The proofs we construct are implicitly conditional to account for the situation of limited

fault tolerance. The main results we establish can be expressed by the following formula:

W (r1; . . . ; rn) � s = V (r1; . . . ; rn)

where W is a predicate to de�ne a minimal working hardware subset over time, s is the

uniprocessor model's system results, r1; . . . ; rn are the results of the replicated processors, and

V is a function that selects the properly voted values at each step. Moreover, asynchronous

operation is assumed at the lowest speci�cation layer. In this case, we further establish that

if the minimal working hardware includes an adequate number of nonfaulty clocks, and clock

synchronization is maintained, then the voted outputs continue to match those of higher level

speci�cations. Thus, as long as the system hardware does not experience an unusually heavy

burst of component faults, the proof establishes that no erroneous operation will occur at

the system level. Individual replicates may produce errors, but they will be out-voted by

replicates producing correct results.

If the condition W were true 100% of the time, the system would never fail. Unfortu-

nately, real devices are imperfect and this cannot be achieved in practice. The design of

the fault-tolerant architecture must ensure that condition W holds with high probability;

typically, the goal is P (W ) � 1 � 10�9 for a 10 hour mission. This condition provides a

vital connection between the reliability model and the formal correctness proofs. The proofs

conditionally establish that system output is not erroneous as long as W holds, and the

reliability model predicts that W will hold with adequately high probability.

In the formal development to follow, we model the possible occurrence of component

hardware faults and the unknown nature of computation results produced under such condi-

tions. It is important to note that this modeling is for speci�cation purposes only and re
ects

no self-cognizance on the part of the running system. We assume a nonrecon�gurable archi-

tecture that is capable of masking the e�ects of faults, but makes no attempt to detect or

diagnose those faults. Each replicate is computing independently and continues to operate

the best it can under faulty conditions; it has no knowledge of its own faultiness or that of
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its peers. Wherever the formal speci�cations consider the two cases of whether a processor

is faulty or not, it is important to remember that this case analysis is not performed by the

running system. Also, it is important to realize that transient-fault recovery is a process

that is continually in e�ect, even when there have been no fault occurrences. Each processor

in the system continually votes and replaces its state with voted values. Thus, the transient

fault recovery process does not require fault detection.

1.3 Previous E�orts

Many techniques for implementing fault-tolerance through redundancy have been developed

over the past decade, e.g. SIFT [11], FTMP [12], FTP [13], MAFT [14], and MARS [15].

An often overlooked but signi�cant factor in the development process is the approach to

system veri�cation. In SIFT and MAFT, serious consideration was given to the need to

mathematically reason about the system. In FTMP and FTP, the veri�cation concept was

almost exclusively testing.

Among previous e�orts, only the SIFT project attempted to use formal methods [16]. Al-

though the SIFT operating system was never completely veri�ed [17], the concept of Byzan-

tine Generals algorithms was developed [18] as was the �rst fault-tolerant clock synchroniza-

tion algorithm with a mathematical performance proof [9]. Other theoretical investigations

have also addressed the problems of replicated systems [19].

Some recent work at SRI International has focused on problems related to the style of

fault-tolerant computing adopted by RCP. Rushby has studied a fault masking and tran-

sient recovery model and created a formalization of it using Ehdm [20, 21]. In addition,

Shankar has undertaken the formalization of a general scheme for modeling fault-tolerant

clock synchronization algorithms [22, 23].

2 Speci�cation Hierarchy and Veri�cation Approach

This section outlines the general methods used in the RCP speci�cations and proofs. Detailed

discussions of the actual speci�cations appear in later sections.

2.1 The State Machine Approach to Speci�cation

The speci�cation of the Reliable Computing Platform (RCP) is based upon a state-machine

method. The behavior of the system is described by specifying an initial state and the

allowable transitions from one state to another. The speci�cation of the transition must

determine (or constrain) the allowable destination states in terms of the current state and

current inputs. One way of doing this is to specify the transition as a function:

ftran : state� input! state

This is an appealing method when it can be used. A second method is to specify the transition

as a mathematical relation between the current state, the input and the new state. One way
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to specify a mathematical relation is to de�ne it using a function from the current state, the

current input and the new state to a boolean:

R : state� input� state! boolean

The function R is true precisely when the relation holds and false, otherwise. The meaning

is as follows: a transition from the current state to the new state can occur only when the

relation is true. Although the concept is simple it is somewhat awkward to use at �rst.

Consider the function g de�ned by g(x) = (x+ 4)2.

In relational form this function might be expressed by:

R(x; y) = [y = (x+ 4)2]

The latter form is more awkward than the former when a purely functional relationship exists

between x and y. However, a relational approach has some advantages over a functional

approach for the speci�cation of complex system behavior. In particular, nondeterminism

can be accommodated in a speci�cation by only partially constraining system behavior. For

example, if R is changed to the following:

R(x; y) = [x > 0 � y = (x+ 4)2]

the value of y is speci�ed only for positive values of x. In other cases, any value of y would

stand in the relation R to x. Such partially constrained speci�cations are very natural for

modeling fault-tolerant systems. It allows us to say nothing about the behavior of failed

components, thereby enabling proved results to hold no matter what behavior is exhibited

by failed components during system operation.

The relation R would be described as follows in the Ehdm speci�cation language:

R: function[number, number -> bool] =

(LAMBDA x,y: (x > 0 IMPLIES y = (x+4)*(x+4)))

The �rst line declares that R is a function from number � number to the set of booleans

(bool). The second line uses lambda notation to de�ne the body of the function.

It should also be noted that the modeling approach used in this paper is not based upon

a �nite state machine technique. Some of the components of the state takes values from

in�nite domains. Therefore, veri�cation tools such as STATEMATE [24] or MCB [25] are

not applicable to our speci�cations.

2.2 Specifying Behavior in the Presence Of Faults

The speci�cation of the RCP system is given in relational form. This enables one to leave

unspeci�ed the behavior of a faulty component. Consider the example below.

Rtran : function[State;State! bool] =
(� s; t : nonfaulty(s(i)) � t(i) = f(s(i)))
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In the relation Rtran, if component i of state s is nonfaulty, then component i of the next

state t is constrained to be equal to f(s(i)). For other values of i, that is, when s(i) is faulty,

the next state value t(i) is unspeci�ed. Any behavior of the faulty component is acceptable

in the speci�cation de�ned by Rtran.

An alternative approach is to de�ne the transition as a partially-speci�ed function:

ftran : function[State! State]
tran ax : Axiom nonfaulty(s(i)) � ftran(s)(i) = g(s(i))

This approach does not �t within the de�nitional structure of Ehdm. Therefore, one must

use an axiom to specify properties of a total, but partially de�ned function. This leads to a

large number of axioms at the base of the proofs and signi�cantly increases the possibility

of inconsistency in the axiom set.

2.3 The Speci�cation Hierarchy

The RCP speci�cation consists of four separate models of the system: Uniprocessor Sys-

tem (US), Replicated Synchronous (RS), Distributed Synchronous (DS), Distributed Asyn-

chronous (DA). Each of these speci�cations is in some sense complete; however, they are at

di�erent levels of abstraction and describe the behavior of the system with di�erent degrees

of detail. The US model is the most abstract and de�nes the behavior of the system using a

single uninterpreted de�nition. The RS level supplies more detail. The computation is repli-

cated on multiple processors but the data exchange and voting is captured in one transition.

The next level, the DS level, introduces even more detail. Explicit bu�ers for data exchange

are modeled and the transition of the RS level is decomposed into 4 sub-transitions. The DA
level introduces time, and di�erent clock times on each of the separate processors.4

1. Uniprocessor System layer (US). As in the Phase 1 report [1], this constitutes the

top-level speci�cation of the functional system behavior de�ned in terms of an idealized,

fault-free computation mechanism. This speci�cation is the correctness criterion to be

met by all lower level designs. The top level of the hierarchy describes the operating

system as a function that performs an arbitrary, application-speci�c computation.

2. Replicated Synchronous layer (RS). This layer corresponds to level 2 of the Phase 1
report. Processors are replicated and the state machine makes global transitions as if

all processors were perfectly synchronized. Interprocessor communication is hidden and

not explicitly modeled at this layer. Suitable mappings are provided to enable proofs

that the RS layer satis�es the US layer speci�cation. Fault tolerance is achieved using

exact-match voting on the results computed by the replicated processors operating on

the same inputs. Exact match voting depends on two additional system activities:

(1) single source input data must be sent to the redundant sites in a consistent man-

ner to ensure that each redundant processor uses exactly the same inputs during its

4Due to the di�culties associated with reasoning about asynchronous systems, it was desirable to perform
as much of the design and veri�cation using a synchronous model as possible. Thus, only at level 4 is time
explicitly introduced.
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computations, and (2) the redundant processing sites must synchronize for the vote.

Interactive consistency can be achieved on sensor inputs by use of Byzantine-resilient

algorithms [18], which are probably best implemented in custom hardware. To ensure

absence of single-point failures, electrically isolated processors cannot share a single

clock. Thus, a fault-tolerant implementation of the uniprocessor model must ultimately

be an asynchronous distributed system. However, the introduction of a fault-tolerant

clock synchronization algorithm, at the DA layer of the hierarchy, enables the upper

level designs to be performed as if the system were synchronous.

3. Distributed Synchronous layer (DS). Next, the interprocessor communication

mechanism is modeled and transitions for the RS layer machine are broken into a

series of subtransitions. Activity on the separate processors is still assumed to occur

synchronously. Interprocessor communication is accomplished using a simple mailbox

scheme. Each processor has a mailbox with bins to store incoming messages from each

of the other processors of the system. It also has an outgoing box that is used to

broadcast data to all of the other processors in the system. The DS machine must be

shown to implement the RS machine.

4. Distributed Asynchronous layer (DA). Finally, the lowest layer relaxes the as-

sumption of synchrony and allows each processor to run on its own independent clock.

Clock time and real time are introduced into the modeling formalism. The DA machine

must be shown to implement the DS machine provided an underlying clock synchro-

nization mechanism is in place.

The basic design strategy is to use a fault-tolerant clock synchronization algorithm as the

foundation of the operating system. The synchronization algorithm provides a global time

base for the system. Although the synchronization is not perfect it is possible to develop

a reliable communications scheme where the clocks of the system are skewed relative to

each other, albeit within a strict known upper bound. For all working clocks p and q, the

synchronization algorithm provides the following key property:

jcp(T )� cq(T )j < �

assuming that the number of faulty clocks, say m, does not exceed (nrep�1)=3, where nrep
is the number of replicated processors. This property enables a simple communications

protocol to be established whereby the receiver waits until maxb + � after a pre-determined

broadcast time before reading a message, where maxb is the maximum communication delay.

Each processor in the system executes the same set of application tasks every cycle. A

cycle consists of the minimumnumber of frames necessary to de�ne a continuously repeating

task schedule. Each frame is frame time units of time long. A frame is further decomposed

into 4 phases. These are the compute, broadcast, vote and sync phases. During the compute
phase, all of the applications tasks scheduled for this frame are executed. The results of all

tasks that are to be voted this frame are then loaded into the outgoing mailbox. During

the next phase, the broadcast phase, the system merely waits a su�cient amount of time to

allow all of the messages to be delivered. As mentioned above, this delay must be greater

than maxb + �. During the vote phase, each processor retrieves all of the replicated data
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from each processor and performs a voting operation. Typically, this operation is a majority

vote on each of the selected state elements. The processor then replaces its local memory

with the voted values. It is crucial that the vote phase is triggered by an interrupt and

all of the vote and state-update code be stored in ROM. This will enable the system to

recover from a transient even when the program counter has been a�ected by a transient

fault. Furthermore, the use of ROM is necessary to ensure that the code itself is not a�ected

by a transient.5 During the �nal phase, the sync phase, the clock synchronization algorithm

is executed. Although conceptually this can be performed in either software or hardware,

we intend to use a hardware implementation.

2.4 Extended State Machine Model

Formalizing the behavior of the Distributed Asynchronous layer requires a means of incor-

porating time. We accomplish this by formulating an extended state machine model that

includes a notion of local clock time for each processor. It also recognizes several types

of transitions or operations that can be invoked by each processor. The type of operation

dictates which special constraints are imposed on state transitions for certain components.

The time-extended state machine model we use allows for autonomous local clocks on

each processor to be modeled using snapshots of clock time coinciding with state transitions.

Clock values represent the time at which the last transition occurred (time current state was

entered). If a state was entered by processor p at time T and is occupied for a duration D,

the next transition occurs for p at time T +D and this clock value is recorded for p in the

next state.6 A function cp(T ) is assumed to map local clock values for processor p into real

time. cp(T ) is a speci�cation-only function; it is not implemented by the system.

Clocks may become skewed in real time. Consequently, the occurrence of corresponding

events on di�erent processors may be skewed in real time. A state transition for the DA
state machine corresponds to an aggregate transition in which each processor experiences

a particular event, such as completing one phase of a frame and beginning the next. Each

processor may experience the event at di�erent real times and even di�erent clock times if

duration values are not identical.

The DA model is based on a specialized kind of state machine tailored to the needs of

an asynchronous system of replicated processors. The intended interpretation is that each

component of the state models the local state of one processor and its associated hardware.

Each processor is assumed to have a local clock running independently of all the others.

Interprocessor communication is achieved by one class of transition that performs a simulta-

neous broadcast of a portion of the local state variables to all the other processors. Broadcast

values are assumed to arrive in the destination mailboxes within a bounded amount of real

time maxb.
The four classes of transitions are de�ned as follows:

5In the design speci�cations, these implementation details are not explicitly speci�ed. However, it is clear
that in order to successfully implement the models and prove that the implementation performs as speci�ed,
such implementation constructs will be needed. These issues will be explored in detail in future work.

6We will use the now standard convention of representing clock time with capital letters and real time
with lower case letters.
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Figure 3: States, transitions, and mappings.

1. L: Purely local processing that involves no broadcast communication or reading of the

mailboxes.

2. B: Broadcast communication where a send is initiated when the state is entered and

must be completed before the next transition.

3. R: Local processing that involves no send operations, but does include reading of

mailbox values.

4. C: Clock synchronization operations that may cause the local clock to be adjusted and

appear to be discontinuous.

We make the simplifying assumption that the duration spent in each state, except those of

type C, is nominally a �xed amount of clock time. Allowances need to be made, however, for

small variations in the actual clock time used by real processors. Thus if � is the maximum

rate of variation and DI ;DA are the intended and actual durations, then jDA �DI j � �DI

must hold.

2.5 The Proof Method

The proof method is a variation of the classical algebraic technique of showing that a

homomorphism exists. Such a proof can be visualized as showing that a diagram \commutes"

(�gure 3). The system is described at two levels of abstraction, which will be referred to

as the top and bottom levels for convenience. The top level consists of a current state s0, a

destination state, t0 and a transition that relates the two. The properties of the transition

are given as a mathematical relation, Ntop(s
0; t0). Similarly, the bottom level consists of a

state s, a destination state, t and a transition that relates the two. The properties of the

transition are given as a mathematical relation, Nbottom(s; t). The state values at the bottom

level are related to the state values at the top level by way of a mapping function, map. To

establish that the bottom level implements the top level one must show that the diagram

commutes:

Nbottom(s; t) � Ntop(map(s);map(t))

11
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Figure 4: The RCP state machine and proof hierarchy

where map(s) = s0 and map(t) = t0 in the diagram. One must also show that initial states

map up:

Ibottom(s) � Itop(map(s))

An additional consideration in constructing such proofs is that only states reachable from

an initial state are relevant. Thus, it su�ces to prove a conditional form of commutativity

that assumes transitions always begin from reachable states. A weaker form of the theorem

is then called for:

reachable(s) ^ Nbottom(s; t) � Ntop(map(s);map(t))

This form enables proofs that proceed by �rst establishing state invariants. Each invariant

is shown to hold for all reachable states and then invoked as a lemma in the main proof.

Figure 4 shows the complete state machine hierarchy and the relationships of transitions

within the aggregate model. By performing three layer-to-layer state machine implementa-

tion proofs, the states of DA, the lowest layer, are shown to correctly map to those of US,
the highest layer. This means that any implementation satisfying the DA speci�cation will

likewise satisfy US under our chosen interpretation.
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3 US/RS Speci�cation

Up to now we have dealt only with general methods. Next we present the RCP speci�cations

as developed using the Ehdm language. An index at the end of this report indicates page

numbers where each speci�cation identi�er and special symbol is de�ned in the text. The

complete Ehdm speci�cations can be found in Appendix A.

3.1 Preliminary De�nitions

The US and RS speci�cations are expressed in terms of some primitive type de�nitions.

First, we must establish a \domain" or type to represent the complete computation state of

a processor. This domain is called Pstate. It is declared in Ehdm as

Pstate: Type (* computation state of a single processor *)

Thus, all of the state information subject to computation has been collapsed into a single

type Pstate. Similarly, inputs denotes the domain of external system inputs (sensors), and

outputs the domain of output values that will be sent to the actuators of the system. These

domains are named by the following Ehdm declarations:

inputs: Type (* type of external sensor input *)

outputs: Type (* actuator output type *)

The number of processors in the system is declared as an arbitrary, positive constant, nrep:

nrep: nat (* number of replicated processors *)

The constraint on nrep's value is expressed by the following axiom

processors exist ax: Axiom nrep > 0

is a requirement that the system have at least one processor. Nearly all symbolic constants

we introduce will have similar constraints imposed on them.

At the RS level and below, information is exchanged among processors via some interpro-

cessor communication mechanism. Additional types are needed to describe the information

units involved, being based on a mailbox model of communication. First, we introduce a

domain of values for each bin in the mailboxes:

MB : Type (* mailbox exchange type *)

Then we construct a type for a complete mailbox on a processor:

MBvec: Type = array [processors] of MB

This scheme provides one slot in the mailbox array for each replicated processor.

13



3.2 US Speci�cation

The US speci�cation is very simple:

s; t: Var Pstate
u: Var inputs
Nus: De�nition function[Pstate;Pstate; inputs! bool] =
(� s; t; u : t = fc(u; s))

The function Nus de�nes a mathematical relation between a current state and a �nal state,

i.e., it de�nes the transition relation. For this model, the transition condition is captured by a

function: fc(u; s), i.e., the computation performed by the uniprocessor system is determinis-

tic and thus can be modeled by a function fc : inputs�Pstate! Pstate. To �t the relational,
nondeterministic state machine model we let the state transition relation Nus(s; t; u) hold i�

t = fc(u; s).

External system outputs are selected from the values computed by fc. The function

fa : Pstate! outputs denotes the selection of state variable values to be sent to the actuators.
The type outputs represents a composite of actuator output types.

Although there is no explicit mention of time in the US model, it is intended that a

transition correspond to one frame of the execution cycle (i.e., the schedule).

The uninterpreted constant initial proc state represents the initial Pstate value from which

computation begins.

initial us: function[Pstate! bool] = (� s : s = initial proc state)

initial us is expressed in predicate form for consistency with the overall relational method of

speci�cation, although in this case the initial state value is unique.

3.3 RS Speci�cation

At the RS layer of design, the state is replicated and a postprocessing step is added after

computation. This step represents the voting of state variables and thus may be selectively

applied. It su�ces to encapsulate the entire voting process under a single function of the

global state. Nonetheless, it is better to split voting into two parts to facilitate re�nement to

the DS layer. Another di�erence introduced at this layer is that the state transition relation

needs to be conditioned on the nonfaulty status of each processor.

The global state at this level has type RSstate. This is a vector of length nrep where

each component of the vector de�nes the state of a speci�c processor. Each processor in

the system can be faulty or nonfaulty as a function of time measured in frames. The local

processor \state" must not only re
ect the computation state but indicate whether or not

a processor is faulty. Such status information about faultiness is included for the purpose

of modeling system behavior. An actual system component would be unable to maintain

this status and it is understood that this part of the state exists only to model operational

behavior and is not an implemented part of the system. Speci�cation of the state type is as

follows:

14



rs proc state: Type = Record healthy : nat;
proc state : Pstate

end record

RSstate: Type = array [processors] of rs proc state

The state of a single processor is given by a record named rs proc state. The �rst �eld of

the record is healthy, which is 0 when a processor is faulty. Otherwise, it indicates the

(unbounded) number of state transitions since the last transient fault. Its value is one

greater than the number of prior nonfaulty frames. A permanent fault is indicated by a

perpetual value of 0. A processor that is recovering from a transient fault is indicated by a

value of healthy less than the recovery period, denoted by the constant recovery period. This
constant is determined by details of the application task schedule and the voting pattern used

for transient recovery. A processor is said to be working whenever healthy � recovery period.
The second �eld of the record is the computation state of the processor. It takes values from

the same domain as used in the US speci�cation. The complete state at this level, RSstate,
is a vector (or array) of these records.

Two uninterpreted functions are assumed to express speci�cations that involve selective

voting on portions of the computation state. Their role is described more fully in section 3.5.

fs: function[Pstate! MB] (* state selection for voting *)

fv: function[Pstate;MBvec! Pstate] (* voting and overwriting *)

These two functions split up the selective voting process to mirror what happens in the RCP

architecture. First, fs is used to select a subset of the state components to be voted during

the current frame. The choice of which components to vote is assumed to depend on the

computation state. It maps into the type MB, which stands for a mailbox item. Second,

the function fv takes the current state value and overwrites selected portions of it with

voted values derived from a vector of mailbox items. Voting is performed on a component-

by-component basis, that is, applied to each task state separately, rather than applied to

entire mailbox contents. Note that selection via fs need not be a mere projection, but could

involve more complex data transformations such as adding checksums to ensure integrity

during transmission.

Given this background, the transition relation, Nrs, can be de�ned:

Nrs: De�nition function[RSstate;RSstate; inputs! bool] =
(� s; t; u : (9 h : (8 i :

(s(i)):healthy > 0

� good values sent(s; u; h(i)) ^ voted �nal state(s; t; u; h; i)))
^ allowable faults(s; t))

This relation is de�ned in terms of three subfunctions: good values sent, voted �nal state,
and allowable faults. The �rst aspect of this de�nition to note is that the relation holds

only when allowable faults is true. This corresponds to the \Maximum Fault Assumption"

discussed in [1], namely that a majority of processors have been working up to the current

time. The next thing to notice is that the transition relation is de�ned in terms of a conjunc-

tion good values sent(s,u,h(i)) ^ voted �nal state(s,t,u,h,i))). The meaning is intuitive: the
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outputs produced by the good processors are contained in the vector h (i.e., h(i) is derived

from the value produced on processor i), and the �nal state t is obtained by voting the h

values. Let us look at the voted �nal state relation �rst.

voted �nal state: function[RSstate;RSstate; inputs;MBmatrix; processors! bool]
= (� s; t; u; h; i : t(i):proc state = fv(fc(u; s(i):proc state); h(i)))

Processor i is initially in state s(i). If it is nonfaulty (s(i):healthy > 0), then its transition

to the state t(i) observes the following constraint:

t(i):proc state = fv(fc(u; s(i):proc state); h(i)))

Otherwise, the behavior of the processor is not de�ned (i.e., a known mathematical relation

is not given). The change to the processor state is de�ned using two functions: fc; fv. The

function fc is the same function used in the US speci�cation. The function fv operates on

the updated computation state and values obtained from the other processors to produce a

new state. The idea is that the new state is obtained by replacing local values with voted

values.

The values sent by the other processors must satisfy the following relation:

good values sent: function[RSstate; inputs;MBvec! bool] =
(� s; u;w : (8 j :

(s(j)):healthy > 0 � w(j) = fs(fc(u; s(j):proc state))))

This relation constrains the h(i) values used in the de�nition of the Nrs transition relation.

Although this function is called with h(i) as an argument, its formal parameter is named w.

There is one w value for each processor, which is used to model that processor's mailboxes.

If the sending processor j is nonfaulty (s(j):healthy > 0), then the value in the receiving

mailbox w is given by

fs(fc(u; s(j):proc state)).

The function fs selects which portion of the total state is to be voted. Note that since it is

a function of the (complete) state, it can di�er as a function of the frame, i.e., di�erent data

are voted during di�erent frames.

The allowable faults function is de�ned as follows:

allowable faults: function[RSstate;RSstate! bool] =
(� s; t : maj working(t)

^ (8 i : t(i):healthy > 0 � t(i):healthy = 1 + s(i):healthy))

This function enforces the restriction imposed by the Maximum Fault Assumption, namely

that all reachable states must have a majority of working processors. The condition is

expressed in terms of the function maj working and its subordinates:

maj condition: function[set[processors]! bool] =
(� A : 2 � card(A) > card(fullset[processors]))
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working proc: function[RSstate; processors! bool] =
(� s; p : (s(p)):healthy � recovery period)

working set: function[RSstate! set[processors]] =
(� s : (� p : working proc(s; p)))

maj working: function[RSstate! bool] =
(� t : maj condition(working set(t)))

The working set function gives the set of working processors for the current replicated state.

The cardinality of this set is then the number of working processors. (Note that sets are

usually represented in Ehdm by predicates on the element type. Thus, (�x : P (x)) denotes

the set fxjP (x)g.) The relation allowable faults is de�ned whenever the destination state

contains a majority of working processors. It also states that if a processor is nonfaulty for

the current frame then the next state's value of healthy equals the previous state's value

plus one.

The initial state predicate initial rs sets each element of the RS state array to the same

value with the healthy �eld equal to recovery period and the proc state �eld equal to ini-
tial proc state.

initial rs: function[RSstate! bool] =
(�s : (8p : s(p):healthy = recovery period^s(p):proc state = initial proc state))

The constant recovery period is the number of frames required to fully recover a processor's

state after experiencing a transient fault. By initializing all healthy �elds to this value, we

are starting the system with all processors working.

3.4 Actuator Outputs

The nature of actuator outputs in the RCP application deserves special attention. In the

uniprocessor case, an output is produced during each frame and sent to the actuators and

no ambiguity exists. In a replicated system, however, multiple actuator values are produced

and sent during each frame. Each nonfaulty processor p sends actuator values given by

fa(rs(p):proc state). There are nrep sets of actuator values delivered in parallel, some of

which may be copies of previous values for processors that have failed in such a way as to

stop generating new values.

It is understood that actuator outputs may be sent through one or more hardware voting

planes before arriving at the actuators themselves. Other types of signal transformations

may be applied to actuator lines between the output drivers and termination points. Ad-

ditionally, some kind of force-sum voting typically is applied at the actuators to mask the

presence of errors in one or more channels. All of this activity seeks to ensure that actuators

perform as directed by a consensus of processors. These special-purpose requirements of the

application leave us unable to completely re
ect the proper constraints in the correctness

criteria. However, we can use the majority function to map replicated output values into the

single actuator output value that would be produced by an ideal uniprocessor. This captures

the e�ect of voting planes and approximates the e�ect of force-sum voting at the actuators.
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To show that replicated actuator outputs can be mapped into a single actuator output, we

reason as follows. At the RS level, there are nrep actuator values given by fa(rs(p):proc state)
for p = 1; . . . ; nrep. In section 4, a property of RS states is described that asserts that

a majority exists among the proc state values. In other words, a majority of values in

frs(p):proc stateg equal maj(rs). Therefore, a majority of fa(rs(p):proc state) values exists
and is equal to fa(maj(rs)). Since maj(rs), the mapped value of an RS state, is equal to the

corresponding US state, this shows that a majority of RS actuator outputs match the value

produced by the fault-free US machine.

Note that various additional requirements may be necessary, but are regarded as peculiar

to the nature of an RCP application. Hence they must be imposed as correctness criteria

beyond those necessary to show that one state machine properly implements another. The

intended use of replicated actuator outputs is not contained in the state machine models and

may necessitate the use of additional, application-speci�c correctness conditions.

3.5 Generic Fault-Tolerant Computing

To model a very general class of fault-tolerant, real-time computing schemes, we seek to

parameterize the speci�cations as much as possible. This parameterization takes the form

of a set of uninterpreted constants, types, and functions along with axioms to constrain

their values. Some instances have already been introduced. The function fc, for example,

represents any computation that can be modeled as a function mapping from inputs and

current state into a new state. As hardware redundancy and transient fault recovery are

added to the speci�cations, additional types and functions are needed to express system

behavior.

3.5.1 State Model for Transient Fault Recovery

Thus far, we have not concerned ourselves with the internal structure of the computation

state Pstate. However, to capture the concept of recovering this state information piecewise,

it is necessary to make some minimal assumptions about the structure of a Pstate value.

control state: Type (* portion of state used to control or schedule

computation activities, e.g., frame counter *)

cell: Type (* index for components of computation state *)

cell state: Type (* information content of computation state components *)

We assume the state contains a control portion, used to schedule and manage computation,

and a vector of cells, each individually accessible and holding application-speci�c state in-

formation. A sample instantiation of these types is that found in our previous report [1]:

the control state is a frame counter and the cells represent the outputs of task instances in

the task schedule. Unlike our previous model, however, the more general framework allows

a system to maintain state information further back than just the previous execution of a

schedule cell.

Also assumed is the existence of access functions to extract and manipulate these items

from a Pstate value.
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succ: function[control state! control state] (* next control state *)

fk: function[Pstate! control state] (* extracts control state *)

ft: function[Pstate; cell! cell state] (* extracts cell (e.g. task) state *)

As described in section 3.3, two additional functions are assumed to express speci�ca-

tions that involve selective voting on portions of the computation state. The functions

fs : Pstate! MB and fv : Pstate�MBvec ! Pstate were introduced to model the selective

voting process applied by each processor. fs selects which portions of the computation re-

sults are subject to voting. fv takes these selected values from the replicated processors and

replaces the required portions of the current state with voted values.

For every voting scheme used for transient fault recovery within RCP, we must be able to

determine when the state components have been recovered from voted values. This condition

is expressed in terms of the current control state and the number of nonfaulty frames since

the last transient fault. Two uninterpreted functions are provided for this purpose.

rec: function[cell; control state; nat! bool]

The predicate rec(c;K;H) is true i� cell c's state should have been recovered when in control

state K with healthy frame count H. Recall that we use a healthy count of one to indicate

that the current frame is nonfaulty, but the previous frame was faulty. This means that

H � 1 healthy frames have occurred prior to the current one.

dep: function[cell; cell; control state! bool]

The predicate dep(c; d;K) indicates that cell c's value in the next state depends on cell d's

value in the current state, when in control state K. This notion of dependency is di�erent

from the notion of computational dependency; it determines which cells need to be recovered

in the current frame on the recovering processor for cell c's value to be considered recovered

at the end of the current frame. If cell c is voted during K, or its computation takes only

sensor inputs, there is no dependency. If c is not computed during K, c depends only on its

own previous value. Otherwise, c depends on one or more cells for its new value.

One derived function is used in the axioms. It asserts that two states X and Y agree on

all the corresponding cells on which cell c depends.

dep agree: function[cell; control state;Pstate;Pstate! bool] =
(� c;K;X; Y : (8 d : dep(c; d;K) � ft(X; d) = ft(Y; d)))

3.5.2 Transient Recovery Axioms

Having postulated several functions that characterize a generic fault-tolerant computing

application, it is necessary to introduce axioms that su�ciently constrain these functions.

Once concrete de�nitions for the functions have been chosen, these axioms must be proved

to follow as theorems for the RCP results to hold for a given application. The eight axioms

are presented below.

succ ax: Axiom fk(fc(u; ps)) = succ(fk(ps))
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The �rst axiom states the simple condition that fc computes the successor of its control state

component.

Three axioms give properties of the function rec.

full recovery: Axiom H � recovery period � rec(c;K;H)

initial recovery: Axiom rec(c;K;H) � H > 2

dep recovery: Axiom rec(c; succ(K);H + 1) ^ dep(c; d;K) � rec(d;K;H)

First, we require that after the recovery period has transpired, all cells should be considered

recovered by rec. Second, it takes a minimum of two frames to recover a cell. (This is

necessary because one frame is used to recover the control state. In some applications, it

may be possible to recover cells in one frame, but our proof approach does not accommodate

those cases and the more conservative minimum of two is used.) Third, if cell c is to be

recovered in the next state, all cells it depends on must be recovered in the current state.

components equal: Axiom
fk(X) = fk(Y ) ^ (8 c : ft(X; c) = ft(Y; c)) � X = Y

This axiom, which is a type of extensionality axiom, requires that the control state and cell

state values form an exhaustive partition of a Pstate value.
Two axioms capture the key conditions for recovery of individual state components.

control recovered: Axiom
maj condition(A) ^ (8 p : p 2 A � w(p) = fs(ps)) � fk(fv(Y;w)) = fk(ps)

cell recovered: Axiom
maj condition(A)

^ (8 p : p 2 A � w(p) = fs(fc(u; ps)))
^ fk(X) = K ^ fk(ps) = K ^ dep agree(c;K;X; ps)

� ft(fv(fc(u;X); w); c) = ft(fc(u; ps); c)

The �rst axiom requires that the control state component be recovered after every frame.

Thus, fv must vote the control state unconditionally and update the Pstate value accordingly.
The conditions in the antecedent state that for a majority of processors, their mailbox items

must match the value selected by the function fs. The other axiom gives the required

condition for recovering an individual cell state value. All cell values that c depends on must

already agree with the majority value. After voting with fv, the function ft must extract a

cell state that matches that of the consensus.

vote maj: Axiom maj condition(A) ^ (8 p : p 2 A � w(p) = fs(ps))
� fv(ps; w) = ps

The �nal axiom expresses the additional requirement on fv that if a majority of processors

agree on selected mailbox values derived from state ps, then fv applied to ps preserves the

value ps. In other words, once a Pstate value has been fully recovered, it will stay that way

in the face of subsequent voting.
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3.5.3 Sample Interpretations of Theory

The proofs of section 4 make use of the foregoing axioms to establish that the RS speci�ca-

tion correctly implements the US speci�cation. A valid interpretation of the model provides

de�nitions for the uninterpreted types and functions that are ultimately used to prove the

axioms as theorems of the interpreted theory. To maintain the generality of our model and

its applicability to a wide range of designs, we do not provide any standard interpreta-

tions. Nevertheless, it is desirable to carry out the exercise to establish that the axioms are

consistent and can be satis�ed for reasonable interpretations.

Two sample interpretations were constructed based on voting schemes introduced in

the Phase 1 report [1]. De�nitions for the basic concepts of a static, task-based scheduling

system were formalized �rst. Included were the notions of cells as being derived from a frame,

subframe pair, and state components to record both the frame counter as well as task outputs.

Task execution according to a �xed, repeating schedule was assumed. De�nitions were also

provided for the continuous voting and cyclic voting schemes [1]. In both cases, the transient

recovery axioms were proved using Ehdm. A preliminary form of these speci�cations are

given in Appendix B.

Carrying out the proofs required several changes to the module structure embodied in

the speci�cations of Appendix A. For this reason, the speci�cations in Appendix B have not

yet been integrated with the speci�cations of Appendix A. Additional work is required to

integrate these provisional interpretations into the existing framework. The proofs conducted

thus far were performed simply to demonstrate that the axioms could be satis�ed and are

thus consistent.

The continuous voting scheme requires that all state components are voted during each

frame. Hence transient recovery is nearly immediate. Formalizations for this case are very

simple and the proofs are trivial. The cyclic voting scheme represents the typical case where

state components are voted in the frame they are produced. A cell's value is not voted during

frames where it is not recomputed. Formalization in this case is somewhat more involved

and the proofs require a bit more e�ort. The proofs and supporting lemmas comprise about

two pages of Ehdm speci�cations. A few selected de�nitions for the cyclic voting functions

are shown below.

fs: function[Pstate! MB] =
(� ps : ps with [(control) := ps:control; (cells) :=

cell apply((� c : ps:cells(c));
ps:control;
null cell array;
num cells)])

fv: function[Pstate;MBvec! Pstate] =
(� ps; w : ps with [(control) := k maj(w); (cells) :=

cell apply((� c : t maj(w; c));
ps:control;
ps:cells;
num cells)])
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rec: function[cell; control state; nat! bool] =
(� c;K;H : H

> 1 + ( if K = cell frame(c)
then schedule length
else mod minus(K; cell frame(c))
end if))

dep: function[cell; cell; control state! bool] =
(� c; d;K : cell frame(c) 6= K ^ c = d)

A few supporting de�nitions are omitted; these functions are presented merely to show the

general order of complexity involved.

4 RS to US Proof

Proving that the RS state machine correctly implements the US state machine involves

introducing a mapping between states of the two machines. The function RSmap de�nes the
required mapping, namely the majority of Pstate values over all the processors.

RSmap: function[RSstate! Pstate] = (� rs : maj(rs))

maj: function[RSstate! Pstate]

maj ax: Axiom (9A :

maj condition(A) ^ (8 p : p 2 A � (rs(p)):proc state = us))
� maj(rs) = us

The two theorems required to establish that RS implements US are the following.

frame commutes: Theorem reachable(s)^Nrs(s; t; u) � Nus(RSmap(s);RSmap(t); u)

initial maps: Theorem initial rs(s) � initial us(RSmap(s))

The theorem frame commutes, depicted in �gure 5, shows that a successive pair of reachable

RS states can be mapped by RSmap into a successive pair of US states. The theorem

initial maps shows that an initial RS state can be mapped into an initial US state.

The notion of state reachability is used to express the theorem frame commutes. This

concept is formalized as follows:7

rs measure: function[RSstate; nat! nat] == (� rs; k : k)

reachable in n: function[RSstate; nat! bool] =
(� t; k : if k = 0

then initial rs(t)
else (9 s; u : reachable in n(s; k � 1) ^ Nrs(s; t; u))

end if) by rs measure
reachable: function[RSstate! bool] = (� t : (9 k : reachable in n(t; k)))
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Figure 5: Mappings in the RS to US proof.

Proofs for the two main theorems are supported by a handful of lemmas. The most

important is a state invariant that relates values of various state components to their corre-

sponding consensus values.

state invariant: function[RSstate prop! bool] =
(� rs prop : (8 t : reachable(t) � rs prop(t)))

state rec inv: Lemma state invariant(state recovery)

control recovery: function[RSstate! bool] =
(� s : (8 p : (s(p)):healthy > 1 � fk((s(p)):proc state) = fk(maj(s))))

cell recovery: function[RSstate! bool] =
(� s : (8 p; c :

rec(c; fk((s(p)):proc state); (s(p)):healthy)
� ft((s(p)):proc state; c) = ft(maj(s); c)))

state recovery: function[RSstate! bool] =
(� s : maj exists(s) ^ control recovery(s) ^ cell recovery(s))

The invariant state recovery is shown to hold for all reachable states. The control recovery

condition of this invariant asserts that if a processor p has been nonfaulty for at least one

frame, then the control state, as extracted by fk, is equal to the consensus value. Similarly,

the cell recovery condition asserts that if cell c is due to be recovered, as indicated by the

predicate rec, then cell state c, as extracted by ft, is equal to the consensus value. Proving

the invariant requires invoking the axioms presented in section 3.5.

Lemmas showing that a majority among RS state values continues to exist after every

state transition are also proved in support of the invariant. One such lemma is also central

to the proof of frame commutes.

7Note that functions de�ned with \==", such as in rs measure, are semantically equivalent to those
de�ned with \="; the only di�erence is automatic expansion of \==" functions during theorem proving.
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rec maj f c: Lemma

maj working(s) ^ state recovery(s) ^Nrs(s; t; u) � maj(t) = fc(u;maj(s))

With a majority of working processors and state recovery holding in current state s, this

lemma concludes that maj applied to the next state t equals the computation step fc applied

to maj of s. From this lemma it is clear how RS states and their images under maj will
correspond to the desired US states.

With the state recovery invariant established, most of the work needed to prove the main

theorem frame commutes is in hand. One additional lemma is useful to bridge the gap

between the two.

working majority: function[RSstate! bool] =
(� s : (8 p : p 2 working set(s) � (s(p)):proc state = maj(s)))

consensus prop: Lemma state recovery(s) � working majority(s)

The lemma consensus prop allows us to draw a key inference from the state recovery invariant,
which is expressed by the predicate working majority. This predicate asserts that for all

processors p that belong to the working set, i.e., for all working processors, p's value of

Pstate is equal to the majority value.

The proof of frame commutes now follows from rec maj f c and consensus prop and as-

sorted de�nitions. The proof of initial maps follows from de�nitions and the lemma ini-
tial maj cond, which states that an initial state satis�es the majority condition.

initial maj cond: Lemma initial rs(s) � maj condition(working set(s))

This completes the proof that the RS machine implements the US machine.

Note that our proof is in terms of a generic model of fault-tolerant computation and

depends on the validity of the axioms of section 3.5. For some choices of de�nitions for the

uninterpreted functions, there will be substantial work required to establish those axioms

as theorems. For example, the Minimal Voting scheme presented in our Phase 1 report [1]

requires a nontrivial proof to establish that full recovery is achieved. Such details have been

omitted here. Nevertheless, the value of our revised approach is in its generality. The results

can now be made to apply to a wide variety of frame-based, fault-tolerant architectures.

5 DS Speci�cation

In the Distributed Synchronous layer we focus on two things: expanding the state to include

\mailboxes" for interprocessor communication and dividing a frame transition into four

sequential subtransitions. The state must also be expanded to include an indicator of which

phase of a frame is currently being processed. This is done as follows.

The structure of the mailbox for a four-processor system is shown in �gure 6. Each

processor contains a mailbox with one slot dedicated to each other processor in the system.

Each slot is large enough to contain the largest amount of data to be broadcast during one

frame. The nth slot of processor n serves as the outgoing mailbox.

The local state for each processor can now be de�ned:
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Figure 6: Structure of Mailboxes in a four-processor system

ds proc state: Type = Record healthy : nat;
proc state : Pstate;
mailbox : MBvec

end record

The vector of all processors ds proc state is named ds proc array:

ds proc array: Type = array [processors] of ds proc state

The complete DSstate is:

DSstate: Type = Record phase : phases;
proc : ds proc array

end record

In the DS speci�cation, a frame is decomposed into four phases:

phases: Type = (compute; broadcast; vote; sync)

The �rst �eld of DSstate holds the current phase. During each phase a distinct function is

performed.

1. Computation. The proc state component of the state is updated with the results of

computation using the function fc.

2. Broadcast. Interprocessor communication is e�ected by broadcasting the MB values

to all other processors, which are deposited in their respective mailboxes.
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3. Voting. The received mailbox values are voted and merged with the current Pstate
values to arrive at the end-of-frame state.

4. Synchronization. The clock synchronization function is performed. (No details of

the clocks are introduced until the DA speci�cation layer.)

The transition relation for the frame is de�ned in terms of a phase-transition relation

Nds.

frame N ds: function[DSstate;DSstate; inputs! bool] =
(� s; t; u : (9 x; y; z :

Nds(s; x; u) ^ Nds(x; y; u) ^Nds(y; z; u) ^ Nds(z; t; u)))

Note how the intermediate states are de�ned using existential quanti�ers and that the output

state of a phase transition becomes the input of the next phase transition. The net result of

performing these four phase transitions will be shown to accomplish the same thing as the

single transition of the RS speci�cation.

The phase-transition relation is de�ned as follows:

Nds: function[DSstate;DSstate; inputs! bool] =
(� s; t; u : maj working(t)

^ t:phase = next phase(s:phase)
^ (8 i :

if s:phase = sync
then N s

ds(s; t; i)

else t:proc(i):healthy = s:proc(i):healthy
^ (s:phase = compute � N c

ds(s; t; u; i))

^ (s:phase = broadcast � N b
ds(s; t; i))

^ (s:phase = vote � N v
ds(s; t; i))

end if))

Notice that the phase-transition relation only holds when the next state t has a majority

of working processors. This corresponds to the analogous condition in Nrs presented in

section 3.3, where it appears as one conjunct of the allowable faults relation. Hence, all

reachable states in the DS speci�cation must have a majority of working processors.

The phase �eld of the state is advanced by the function next phase. The phase-transition
relation is de�ned in terms of four sub-relations: N c

ds, N
b
ds, N

v
ds, andN

s
ds, which correspond to

the compute, broadcast, vote and sync phases, respectively. The quanti�er 8i invokes the sub-
relations for all of the processors of the system. Note that the statement t:proc(i):healthy =
s:proc(i):healthy after the else requires that the value of healthy remain constant throughout

a frame. Thus, if a processor is faulty anywhere in a frame it is considered to be faulty

throughout; the value of healthy may only change at the frame boundaries, i.e., at the sync
to compute transitions. Similarly, full recovery of state information does not occur until the

end of a frame. This is consistent with the previous work [1].

Table 1 provides a summary of the functions that are performed during each phase on

nonfaulty processors. In the table si is an abbreviation for s:proc(i).
The N c

ds sub-relation de�nes the behavior of a single processor during the compute phase:
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Phase Held constant Modi�ed

compute healthy ti:proc state = fc(u; si:proc state)

ti:mailbox(i) = fs(fc(u; si:proc state))

broadcast proc state (8p : ti:mailbox(p) = sp:mailbox(p))

healthy

vote mailbox ti:proc state = fv(si:proc state; si:mailbox)

healthy

sync proc state ti:healthy = 1 + si:healthy

Table 1: Summary of activities during various phases

N c
ds: function[DSstate;DSstate; inputs; processors! bool] =
(� s; t; u; i :

s:proc(i):healthy > 0

� t:proc(i):proc state = fc(u; s:proc(i):proc state)
^ t:proc(i):mailbox(i) = fs(fc(u; s:proc(i):proc state)))

During this phase, the proc state �eld is updated with the results of the computation:

fc(u; s:proc(i):proc state)

Also, the mailbox is loaded with the subset of the results to be broadcast as de�ned by the

function fs. Recall that a processor's own mailbox slot acts as the place to post outgoing

data for broadcast to other processors.

TheN b
ds sub-relation de�nes the behavior of a single processor during the broadcast phase:

N b
ds: function[DSstate;DSstate; processors! bool] =
(� s; t; i : s:proc(i):healthy > 0

� t:proc(i):proc state = s:proc(i):proc state
^ broadcast received(s; t; i))

During this phase the proc state �eld remains unchanged and the broadcast received relation
holds:

broadcast received: function[DSstate;DSstate; processors! bool] =
(� s; t; q : (8 p :

s:proc(p):healthy > 0

� t:proc(q):mailbox(p) = s:proc(p):mailbox(p)))

This states that each nonfaulty processor q receives the values sent by other nonfaulty pro-

cessors. If the sending processor p is faulty, then the consequent of the relation need not hold

and the value found in p's slot of q's mailbox is indeterminate. If the receiving processor q

is faulty, the broadcast received relation is not required to hold in N b
ds. In this situation, all

of q's mailbox values are unspeci�ed.

The N v
ds sub-relation de�nes the behavior of a single processor during the vote phase:

27



N v
ds: function[DSstate;DSstate; processors! bool] =
(� s; t; i : s:proc(i):healthy > 0

� t:proc(i):mailbox = s:proc(i):mailbox
^ t:proc(i):proc state
= fv(s:proc(i):proc state; s:proc(i):mailbox))

During this phase the mailbox �eld remains unchanged and the local processor state is up-

dated with the result of voting the values broadcast by the other processors. The vote

function is named fv.

The N s
ds sub-relation de�nes the behavior of a single processor during the sync phase:

N s
ds: function[DSstate;DSstate; processors! bool] =
(� s; t; i : (s:proc(i):healthy > 0

� t:proc(i):proc state = s:proc(i):proc state)
^ (t:proc(i):healthy > 0

� t:proc(i):healthy = 1 + s:proc(i):healthy))

During the sync phase, the computation state of a nonfaulty processor remains unchanged.

At the end of the sync phase, the current frame ends, so the value of healthy is incremented

by one if the processor is to be nonfaulty in the next frame. This is the same condition

appearing in the relation allowable faults of section 3.3. Any processor assumed to be faulty

in the next frame will have its healthy �eld set to zero. A limit on how many processors

can be faulty simultaneously is imposed by the predicate maj working. Therefore, not every
possible assignment of values to the healthy �elds is admissible; each assignment must satisfy

the Maximum Fault Assumption.

The predicate initial ds puts forth the conditions for a valid initial state. The initial

phase is set to compute and each element of the DS state array has its healthy �eld equal to

recovery period and its proc state �eld equal to initial proc state.

initial ds: function[DSstate! bool] =
(� s : s:phase = compute

^ (8 i : s:proc(i):healthy = recovery period
^ s:proc(i):proc state = initial proc state))

As before, the constant recovery period is the number of frames required to fully recover a

processor's state after experiencing a transient fault. By initializing the healthy �elds to this
value, we are starting the system with all processors working. Note that the mailbox �elds

are not initialized; any mailbox values can appear in a valid initial DSstate.

6 DS to RS Proof

The DS speci�cation performs the functionality of the RS speci�cation in four sequential

steps. Thus, we must show that the \frame" transition function, frame N ds,

frame N ds(s; t; u) = (9x; y; z : Nds(s; x; u)^Nds(x; y; u)^Nds(y; z; u)^Nds(z; t; u))

accomplishes the same function as a single transition of the RS level transition function

Nrs(s; t; u) under an appropriate mapping function.
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6.1 DS to RS Mapping

The DS to RS mapping function, DSmap, is de�ned as:

DSmap: function[DSstate! RSstate] = (� ds : ss update(ds; nrep))

where ss update is given by:

ss update: Recursive function[DSstate; nat! RSstate] =
(� ds; p : if (p = 0) _ (p > nrep)

then rs0
else ss update(ds; p � 1)

with [(p) := rsproc0
with [(healthy) := ds:proc(p):healthy;

(proc state) := ds:proc(p):proc state]]
end if) by ssu measure

This mapping copies the healthy and proc state �elds for each processor as illustrated in

�gure 7. To establish that DS implements RS, the commutativity diagram of �gure 8 must

��AA AA�� ��AA AA�� ��AA AA��

mailboxmailboxmailbox

DSstate: phase

nrep21

...

...

1 2 nrep

RSstate:

proc statehealthy

healthy proc state

healthy proc state

proc statehealthy healthy proc state

proc statehealthy

Figure 7: Mapping DS to RS: the DSmap function

be shown to commute. To establish that the diagram commutes, the following formula must

be proved.

frame commutes: Theorem
s:phase = compute ^ frame N ds(s; t; u) � Nrs(DSmap(s);DSmap(t); u)

Note that to make the correct correspondence, we must consider only DS states found at the

beginning of each frame, namely those whose phase is compute. Refer to �gure 4 on page 12

for a visual interpretation of this theorem.

It is also necessary to show that the initial states are mapped properly:
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initial maps: Theorem initial ds(s) � initial rs(DSmap(s))

Several basic lemmas follow from the de�nition of the mapping function:

map 1: Lemma DSmap(s)(i):healthy = s:proc(i):healthy

map 2: Lemma DSmap(s)(i):proc state = s:proc(i):proc state

map 3: Lemma allowable faults(s; t) � RS:allowable faults(DSmap(s);DSmap(t))

map 4: LemmaRS:good values sent(DSmap(s); u; w) = good values sent(s; u;w)

map 5: Lemma RS:voted �nal state(DSmap(s);DSmap(t); u; h; i)
= voted �nal state(s; t; u; h; i)

map 7: Lemma RS:maj working(DSmap(s)) = DS:maj working(s)

6.2 The Proof

The proof of the frame commutes theorem involves the expansion of the frame N ds relation
and showing that the resulting formula logically implies Nrs(DSmap(s);DSmap(t); u). We

begin with the de�nition of frame N ds:

frame N ds(s; t; u) = (9 x; y; z : Nds(s; x; u) ^ Nds(x; y; u) ^ Nds(y; z; u) ^
Nds(z; t; u))

Since s:phase = compute, Nds(s; x; u) can be rewritten as:

Nds(s; x; u) = maj working(x) ^ x:phase = broadcast
^ (8 i : x:proc(i):healthy = s:proc(i):healthy ^N c

ds(s; x; u; i))

Substituting for Nds(s; x; u) we obtain
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s:phase = compute ^ frame N ds(s; t; u)
� (9 x; y; z : maj working(x)

^ (8 i : x:phase = broadcast
^ x:proc(i):healthy = s:proc(i):healthy ^ N c

ds(s; x; u; i))

^Nds(x; y; u)^ Nds(y; z; u) ^Nds(z; t; u))

Next, expand N c
ds, the Nds term for the broadcast phase, and combine universal quanti�ers:

s:phase = compute ^ frame N ds(s; t; u)
� (9 x; y; z : maj working(x) ^maj working(y)

^ (8 i : x:phase = broadcast
^ x:proc(i):healthy = s:proc(i):healthy
^ (s:proc(i):healthy > 0

� x:proc(i):proc state = fc(u; s:proc(i):proc state))
^ y:phase = vote
^ y:proc(i):healthy = x:proc(i):healthy
^ (x:proc(i):healthy > 0

� (y:proc(i):proc state = x:proc(i):proc state
^ (8 j : x:proc(j):healthy > 0

� y:proc(i):mailbox(j) = fs(x:proc(j):proc state)))))
^Nds(y; z; u)^ Nds(z; t; u))

Simplifying to eliminate x yields:

s:phase = compute ^ frame N ds(s; t; u)
� (9 y; z : maj working(y)

^ (8 i : y:phase = vote
^ y:proc(i):healthy = s:proc(i):healthy
^ (s:proc(i):healthy > 0

� (y:proc(i):proc state = fc(u; s:proc(i):proc state)
^ (8 j : s:proc(j):healthy > 0

� y:proc(i):mailbox(j) = fs((y:proc(j)):proc state)))))
^Nds(y; z; u)^ Nds(z; t; u))

Expanding the Nds term for the third phase and simplifying produces:

s:phase = compute ^ frame N ds(s; t; u)
� (9 z : maj working(z)

^ (8 i : z:phase = sync
^ z:proc(i):healthy = s:proc(i):healthy
^ (s:proc(i):healthy > 0

� z:proc(i):proc state = fv(fc(u; s:proc(i):proc state); z:proc(i):mailbox)
^ (8 j : s:proc(j):healthy > 0

� z:proc(i):mailbox(j) = fs(fc(u; (s:proc(j)):proc state)))))
^Nds(z; t; u))

Expanding the fourth phase Nds term and simplifying gives:
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s:phase = compute ^ frame N ds(s; t; u)
� (9 z : maj working(t)

^ (8 i : t:phase = compute
^ (s:proc(i):healthy > 0

� t:proc(i):proc state = fv(fc(u; s:proc(i):proc state); z:proc(i):mailbox)
^ (8 j : s:proc(j):healthy > 0

� z:proc(i):mailbox(j) = fs(fc(u; (s:proc(j)):proc state))))
^ (t:proc(i):healthy > 0

� t:proc(i):healthy = 1 + s:proc(i):healthy)))

Letting h(i) = z:proc(i):mailbox,

s:phase = compute ^ frame N ds(s; t; u)
� maj working(t)
^ (9 h : (8 i : t:phase = compute

^ (t:proc(i):healthy > 0

� t:proc(i):healthy = 1 + s:proc(i):healthy)
^ (s:proc(i):healthy > 0

� t:proc(i):proc state = fv(fc(u; s:proc(i):proc state); h(i))
^ (8 j : s:proc(j):healthy > 0

� h(i)(j) = fs(fc(u; (s:proc(j)):proc state))))))

This must be shown to logically implyNrs(DSmap(s);DSmap(t); u), which can be rewrit-
ten as:

(9 h : (8 i : s:proc(i):healthy > 0

� (8j : s:proc(j):healthy > 0 � h(i)(j) = fs(fc(u; s:proc(j):proc state)))
^ t:proc(i):proc state = fv(fc(u; s:proc(i):proc state); h(i))))

^ allowable faults(s; t))

The �rst conjunct can be seen to follow by inspection. By expanding allowable faults,

allowable faults: function[RSstate;RSstate! bool] =
(� s; t : maj working(t)

^ (8 i : t(i):healthy > 0 � (t(i)):healthy = 1 + s(i):healthy))

the second conjunct can be seen to follow as well. Q.E.D.

7 DA Speci�cation

The DA speci�cation performs the same functions as the DS speci�cation; however, explicit

consideration is given to the timing of the system. Every processor of the system has its own

clock and consequently task executions on one processor take place at di�erent times than

on other processors. Nevertheless, the model at this level explicitly takes advantage of the

fact that the clocks of the system are synchronized to within a bounded skew �. Therefore,

it is necessary to give an overview of clock synchronization theory before elaborating the DA
speci�cation.
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7.1 Clock Synchronization Theory

In this section we will discuss the synchronization theory upon which the DA speci�cation

depends. Although the RCP architecture does not depend upon any particular clock synchro-

nization algorithm, we have used the speci�cation for the interactive consistency algorithm

(ICA) [9, 8] since Ehdm speci�cations for ICA already exist.

In this section we show the essential aspects of this theory. The formal de�nition of a

clock is fundamental. A clock can be modeled as a function from real time t to clock time T :

C(t) = T or as a function from clock time to real time: c(T ) = t. Since the ICA theory was

expressed in terms of the latter, we will also be modeling clocks as functions from clock time

to real time. We must be careful to distinguish between an uncorrected clock and a clock

which is being resynchronized periodically. We will use the notation c(T ) for a uncorrected

clock and rt(i)(T ) to represent a synchronized clock during its ith frame.8

Good clocks have di�erent drift rates with respect to perfect time. Nevertheless, this

drift rate is bounded. Thus, we can de�ne a good clock as one whose drift rate is strictly

bounded by �=2. A clock is \good", (i.e. a predicate good clock(T0; Tn) is true), between

clock times T0 and Tn i�:

(8 T1; T2 : T0 � T1 � Tn ^ T0 � T2 � Tn

� jcp(T1)� cp(T2)� (T1 � T2)j �
�

2
� jT1 � T2j)

The synchronization algorithm is executed once every frame of duration frame time. The
notation T (i) is used to represent the start of the ith frame, i.e., (T 0 + i � frame time). The
notation T 2 R(i) means that T falls in the ith frame, i.e.,

(9� : 0 � � � frame time ^ T = T (i) +�))

During the ith frame the synchronized clock on processor p, rtp, is de�ned by:

rtp(i; T ) = cp(T + Corr(i)p )

where Corr is the cumulative sum of the corrections that have been made to the (logical)

clock. It is de�ned by :

Corr(i)p = if i > 0 then Corr(i�1)p +�(i�1)
p

else initial Corr(p)
end if

where initial Corr(p) is conveniently equated to zero (i.e. Corr(0)p = 0). The function �(i�1)
p

is the correction factor for the current frame as computed by the clock synchronization

algorithm.

We now de�ne what is meant by a clock being nonfaulty in the current frame. The

predicate nonfaulty clock is de�ned as follows:

A1: Lemma nonfaulty clock(p; i) = goodclock(p; T (0)+Corr(0)p ; T (i+1)+ Corr(i)p )

8This di�ers from the notation, c(i)(T ), used in [8].
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Note that in order for a clock to be non-faulty in the current frame it is necessary that it

has been working continuously from time 0.9

The clock synchronization theory provides two important properties about the clock

synchronization algorithm, namely that the skew between good clocks is bounded and that

the correction to a good clock is always bounded. The maximum skew is denoted by � and

the maximum correction is denoted by �. More formally,

Clock Synchronization Conditions: For all nonfaulty clocks p and q:

S1: 8T 2 R(i) : jrt(i)p (T )� rt(i)q (T )j < �

S2: jCorr(i+1)p � Corr(i)p j < �

The value of � is determined by several key parameters of the synchronization system:

�; �; �0;m, nrep listed in table 2. The formal de�nition of � has already been given. The

parameter meaning

� upper bound on drift rate of a good clock

� upper bound on error in reading another processor's clock

�0 upper bound on initial skew

m maximum number of faulty clocks tolerated

nrep number of clocks in system

Table 2: Meaning of Synchronization Parameters

parameter � is a bound on the error in reading another processor's clock. The synchroniza-

tion algorithm requires that every processor in the system obtain an estimate of its skew

relative to every other clock in the system. The notation �(i)
qp is used to represent the skew

between clocks q and p during the ith frame as perceived by p. Thus, the real time at which

p's clock reads T0 +�(i)
qp should be very close to the real time that q's clock reads T0. This

is constrained by an axiom to be less than �:

Axiom If conditions S1 and S2 hold throughout the ith frame, then

nonfaulty clock(p; i) ^ nonfaulty clock(q; i)
� j�(i)

qp j � sync time

^ (9 T0 : T0 2 S(i) ^ jrt(i)p (T0 +�(i)
qp )� rt(i)q (T0)j < �)

The amount of time reserved for executing the clock synchronization algorithm is denoted

by the constant sync time.
The third parameter, �0, is constrained as follows:

A0: Axiom jrt(0)p (0)� rt(0)q (0)j < �0

9This is a limitation not of the operating system, but of existing, mechanically veri�ed fault-tolerant clock
synchronization theory. Future work will concentrate on how to make clock synchronization robust in the
presence of transient faults.
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Thus, �0 bounds the initial clock skew.

The property that the ICA clock synchronization algorithm meets the two synchroniza-

tion conditions S1 and S2 was proved in [8]. These were named Theorem 1 and Theorem 2:
formally as:

Theorem 1: Theorem
S1A(i) � (8 p; q : (8 T :

nonfaulty clock(p; i) ^ nonfaulty clock(q; i) ^ T 2 R(i)

� jrt(i)p (T )� rt(i)q (T )j � �)

Theorem 2: Theorem jCorr(i+1)p � Corr(i)p j < �

where the premise for Theorem 1, S1A, is de�ned by:

(�i : (8r : (m+ 1 <= r and r <= n) � nonfaulty clock(r; i)))

and where m is equal to the maximum number of faulty processors.

We have used the following equivalent but more convenient premise: S1A : function[period!
bool] == (� i : enough clocks(i)).10 where

enough clocks: function[period! bool] =
(� i : 3 � num good clocks(i; nrep) > 2 � nrep)

and

num good clocks: Recursive function[period; nat! nat] =
(� i; k : if k = 0 _ k > nrep

then 0

elsif nonfaulty clock(k; i)
then 1 + num good clocks(i; k � 1)

else num good clocks(i; k � 1)

end if) by num measure

The theorems proved in [8] also depend upon the following axioms not mentioned above.

A2 aux: Axiom �(i)
pp = 0

C0: Axiom m < nrep ^m � nrep� num good clocks(i; nrep)

C1: Axiom frame time � 3 � sync time

C2: Axiom sync time � �

C3: Axiom � � �

C4: Axiom � � � + �+ �

2
� sync time

C5: Axiom � � �0 + � � frame time

C6: Axiom � � 2 � (�+ � � sync time) + 2 �m ��=(nrep�m)

+ nrep � � � frame time=(nrep�m) + � ��
+ nrep � � � �=(nrep�m)

10Note that this form also subsumes axiom C0 below.
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With the S1A premise expanded, the main synchronization theorem becomes:

sync thm: Theorem enough clocks(i)
� (8p; q : (8T : T 2 R(i)^nonfaulty clock(p; i)^nonfaulty clock(q; i)

� jrt(i)p (T )� rt(i)q (T )j � �))

The proof that DA implements DS depends crucially upon this theorem.

7.2 The DA Formalization

Now that a clock synchronization theory is at our disposal, the DA model can be speci�ed.

Two new �elds are added to the state vector associated with each processor: lclock and

cum delta:

da proc state: Type = Record healthy : nat;
proc state : Pstate;
mailbox : MBvec;
lclock : logical clocktime;
cum delta : number

end record

The complete DAstate is:

DAstate: Type = Record phase : phases;
sync period : nat;
proc : da proc array

end record

where da proc state is de�ned by:

da proc array: Type = array [processors] of da proc state

The sync period �eld holds the current frame of the system. Note this does not represent the

frame counter on any particular processor, but rather the ideal, unbounded frame counter.

The lclock �eld of a DAstate stores the current value of the processor's local clock. The
real-time corresponding to this clock time can be found through use of the auxiliary function

da rt.

da rt: function[DAstate; processors; logical clocktime! realtime] =
(� da; p; T : cp(T + da:proc(p):cum delta)

This function corresponds to the rt function of the clock synchronization theory. Thus,

da rt(s,p,T) represents processor p's synchronized clock. Given a clock time T in the current

frame (s.sync period), da rt returns the real-time that processor p's clock reads T . The current

value of the cumulative correction is stored in the �eld cum delta.
Every frame the clock synchronization algorithm is executed, and �(i)

p is added to cum delta.
Note that this corresponds to the Corr function of the clock synchronization theory. The

relationship between cp, da rt, and cum delta is illustrated in �gure 9.
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� cum delta

da rtp(T )
real time

clock time (T)

cp(T )

Figure 9: Relationship between cp and da rt

Since the original ICA clock theory was not cast into the state-machine framework used

in this work, it is necessary to show that the the da rt function is equivalent to the rt

function of the clock synchronization theory. The �rst step is to equate the period of the

clock synchronization with the length of a frame in the operating system. Since the length

of the period in the clock theory is a parameter of the theory, this is accomplished by setting

it equal to frame length. Similarly, the execution time of the synchronization algorithm is a

parameter of the clock theory which is set equal to sync period.11 The clock synchronization

theory also requires that a constraint be placed on the duration of the sync phase:

AXIOM: duration(sync) >= sync period

The next step is to equate the clocks of the state-machine with the clocks in the sync theory.

This is done by proving the following lemma:

da rt lem: Lemma reachable(da) ^ nonfaulty clock(p; da:sync period)

� da rt(da; p; T ) = rt
(da:sync period)
p (T )

This lemma follows from the fact that in every period (during the sync phase) the cum delta
�eld is incremented by �i:

t:proc(i):cum delta = s:proc(i):cum delta+�
s:sync period
i

The algorithm that is speci�ed in the clock theory uses �i as its correction factor each frame.

The exact same correction factor is used in the DA model. Thus, the RCP system executes

11These are named R and S in [9, 8]. However, these names con
icted with their use in [1].
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the same algorithm as speci�ed in the clock theory, and cum delta will always be equal to

Corr. Thus, rtp = da rtp.
The speci�cation of time-critical behavior in the DA model is accomplished using the

da rt function. For example, the broadcast received function is expressed in terms of da rt:

broadcast received: function[DAstate;DAstate; processors! bool] =
(� s; t; q : (8 p :

(s:proc(p):healthy > 0

^ da rt(s; p; s:proc(p):lclock) +max comm delay
� da rt(t; q; t:proc(q):lclock)

� t:proc(q):mailbox(p) = s:proc(p):mailbox(p)

Thus, the data in the incoming bin p on processor q is only de�ned to be equal to the value

broadcast by p (i.e. s:proc(p):mailbox(p)) when the real time on the receiving end (i.e.

da rt(t; q; t:proc(q):lclock) is greater than da rt(s; p; s:proc(p):lclock) plus max comm delay.
This speci�cation anticipates the design of a communications system that can deliver a

message in a bounded amount of time, in particular within max comm delay units of time.

In the DA level there is no single transition that covers the entire frame. There is only a

transition relation for a phase. The Nda relation is:

Nda: function[DAstate;DAstate; inputs! bool] =
(� s; t; u : enough hardware(t) ^ t:phase = next phase(s:phase)

^ (8 i : if s:phase = sync
then N s

da(s; t; i)

else t:proc(i):healthy = s:proc(i):healthy
^ t:proc(i):cum delta = s:proc(i):cum delta
^ t:sync period = s:sync period
^ (nonfaulty clock(i; s:sync period)
� clock advanced(s:proc(i):lclock; t:proc(i):lclock; duration(s:phase)))

^ (s:phase = compute � N c
da(s; t; u; i))

^ (s:phase = broadcast � N b
da(s; t; i))

^ (s:phase = vote � N v
da(s; t; i))

end if))

Note that the transition to a new state is only valid when the enough hardware function holds
in the next state. This function is de�ned as follows:

enough hardware: function[DAstate! bool] =
(� t : maj working(t) ^ enough clocks(t:sync period))

maj working is de�ned identically in RS, DS, and DA. Its de�nition is presented in section 3.3.
The de�nition of enough clocks appears in section 7.1.

As in the DS level, the state transition relation Nda is de�ned in terms of four sub-

relations, each of which applies to a particular phase type. These are called N c
da, N

b
da, N

v
da

and N s
da.

The N c
da sub-relation is:
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N c
da: function[DAstate;DAstate; inputs; processors! bool] =
(� s; t; u; i :

s:proc(i):healthy > 0

� t:proc(i):proc state = fc(u; s:proc(i):proc state)
^ t:proc(i):mailbox(i) = fs(fc(u; s:proc(i):proc state))

Just as in the corresponding DS relation, the proc state �eld is updated with the results of

the computation, fc(u; s:proc(i):proc state). Also, the mailbox is loaded with the subset of

the results to be broadcast as de�ned by the function fs. Unlike the DS model, the local

clock time is changed in the new state. This is accomplished by the predicate clock advanced,
which is not based on a simple incrementation operation because the number of clock cycles

consumed by an instruction streamwill exhibit a small amount of variation on real processors.

The function clock advanced accounts for this variability, meaning the start of the next phase

is not deterministically related to the start time of the current phase.

�: number

clock advanced: function[logical clocktime; logical clocktime; number! bool] =
(� X; Y;D : X +D � (1� �) � Y ^ Y � X +D � (1 + �))

where � represents the maximum rate at which one processor's execution time over a phase

can vary from the nominal amount given by the duration function. � is intended to be a

nonnegative fractional value, 0 � � < 1. The nominal amount of time spent in each phase

is speci�ed by a function named duration:

duration: function[phases! logical clocktime]

However, the actual amount of clock time spent in a phase is not �xed, but can vary within

limits. For example, the actual duration of the compute phase can be anything from (1 �
�) � duration(compute) to (1 + �) � duration(compute). The value of � is a parameter of the

speci�cation and can be set to any desired value. However, there are some constraints on

the implementation that are expressed in terms of �:

broadcast duration: Axiom
duration(broadcast)�(1��

2
)�2���duration(compute)���duration(broadcast))�

� � max comm delay

broadcast duration2: Axiom
duration(broadcast)�2�� �duration(compute)�� �duration(broadcast) >= 0

pos durations: Axiom
0 <= (1 � �) � duration(compute) ^ 0 <= (1� �) � duration(broadcast)
^ 0 <= (1� �) � duration(vote) ^ 0 <= (1� �) � duration(sync)

all durations: Axiom
(1 + �) � duration(compute) + (1 + �) � duration(broadcast)
� frame time
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The constants � and � are drawn from the clock synchronization theory, as explained in

section 7.1.

There may be many possible causes of the variation in execution times on di�erent

processors. The asynchronous interface between a processor and its memory can lead to

di�erent execution times between two processors even when they execute exactly the same

instructions on exactly the same data. Another possible cause of di�erent execution times

could be the use of di�erent schedules on di�erent processors.

The N b
da sub-relation is:

N b
da: function[DAstate;DAstate; processors! bool] =
(� s; t; i : s:proc(i):healthy > 0

� t:proc(i):proc state = s:proc(i):proc state
^ broadcast received(s; t; i))

As in the corresponding DS relation, the proc state �eld remains unchanged and the broad-
cast received relation must hold. When it holds, all the nonfaulty processors receive the

values sent by other nonfaulty processors. However, this is now contingent upon certain

constraints on the times that things happen.

The N v
da sub-relation is:

N v
da: function[DAstate;DAstate; processors! bool] =
(� s; t; i : s:proc(i):healthy > 0

� t:proc(i):mailbox = s:proc(i):mailbox
^ t:proc(i):proc state = fv(s:proc(i):proc state; s:proc(i):mailbox))

As before, the mailbox �eld remains unchanged and the local processor state is updated with

the result of voting the values broadcast by the other processors.

The N s
da sub-relation is:

N s
da: function[DAstate;DAstate; processors! bool] =
(� s; t; i : (s:proc(i):healthy > 0

� t:proc(i):proc state = s:proc(i):proc state)
^ (t:proc(i):healthy > 0

� t:proc(i):healthy = 1 + s:proc(i):healthy
^ nonfaulty clock(i; t:sync period))

^ t:sync period = 1 + s:sync period
^ (nonfaulty clock(i; s:sync period)

� t:proc(i):lclock = (1 + s:sync period) � frame time

^t:proc(i):cum delta = s:proc(i):cum delta+�
s:sync period
i ))

During the sync phase, the processor state remains unchanged. As in the DS speci�cation,

the healthy �eld is incremented by one. Unlike the DS model, the local clock time is changed

in the new state. For this sub-relation, the clock is not advanced in accordance with the

function clock advanced, because this phase is terminated by a clock interrupt. At a pre-

determined local clock time, the clock interrupt �res and the next frame is initiated. The

speci�cation requires that the interrupts �re at clock times that are integral multiples of the

frame length, frame time.
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In addition to requirements conditioned on having a nonfaulty processor, the DA speci-

�cations are concerned with having a nonfaulty clock as well. It is assumed that the clock

is an independent piece of hardware whose faults can be isolated from those of the corre-

sponding processor. Although some implementations of a fault-tolerant architecture such as

RCP could execute part of the clock synchronization function in software, thereby making

clock faults and processor faults mutually dependent, we assume that RCP implementations

will have a dedicated hardware clock synchronization function. This means that a clock can

continue to function properly during a transient fault period on its adjoining processor. The

converse is not true, however. Since the software executing on a processor depends on the

clock to properly schedule events, a nonfaulty processor having a faulty clock may produce

errors. Therefore, a one-way fault dependency exists.

Processor

Clock Function Faulty Recovering Working

Faulty Voting N N N

Clock sync N N N

Nonfaulty Voting N N Y

Clock sync Y Y Y

Figure 10: Relationship of clock and processor faults.

Figure 10 summarizes the interaction between clock faults and processor faults. It shows

for each combination of fault mode whether a processor can make a sound contribution to

voting the state variables and whether a clock can properly contribute to clock synchroniza-

tion. These conditions have been encoded in the various DA speci�cations. In particular,

the relation N s
da shown above requires that for a processor to be nonfaulty in the next frame

it must have a nonfaulty clock through the end of that frame. Recall that the de�nition of

nonfaulty clock requires that it be continuously nonfaulty from time zero.12

The predicate initial da puts forth the conditions for a valid initial state. The initial phase
is set to compute and the initial sync period is set to zero. Each element of the DA state array

has its healthy �eld equal to recovery period and its proc state �eld equal to initial proc state.

initial da: function[DAstate! bool] =
(� s : s:phase = compute ^ s:sync period = 0

^ (8 i : s:proc(i):healthy = recovery period
^ s:proc(i):proc state = initial proc state
^ s:proc(i):cum delta = 0

^ s:proc(i):lclock = 0 ^ nonfaulty clock(i; 0)))

As before, the constant recovery period is the number of frames required to fully recover a

processor's state after experiencing a transient fault. By initializing the healthy �elds to this

12This does not represent a de�ciency in the design of the DA model but rather is a limitation imposed
by the existing, mechanically veri�ed clock synchronization algorithm. Future work will concentrate on
liberating the clock synchronization property from this restriction.
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value, we are starting the system with all processors working. Note that the mailbox �elds

are not initialized; any mailbox values can appear in a valid initial DAstate.

8 DA to DS Proof

8.1 DA to DS Mapping

The DA to DS mapping function, DAmap, is de�ned as:

DAmap: function[DAstate! DSstate] =
(� da : ss update(da; nrep) with [(phase) := da:phase])

where ss update is given by:

ss update: Recursive function[DAstate; nat! DSstate] =
(� da; k : if (k = 0) _ (k > nrep)

then ds0
else ss update(da; k � 1)

with [(proc)(k) := dsproc0
with [(healthy) := da:proc(k):healthy;

(proc state) := da:proc(k):proc state;
(mailbox) := da:proc(k):mailbox]]

end if) by da measure

Thus, the lclock, cum delta, and sync period �elds are not mapped (i.e., are abstracted away)

and all of the other �elds are mapped identically. To establish that DA implements DS,
the commutativity diagram of �gure 11 must be shown to commute. To establish that the

66

-

-

DAmapDAmap

Nda(s; t; u)
ts

Nds(s
0; t0; u)

t
0

s
0

Figure 11: Commutative Diagram for DA to DS Proof

diagram commutes, the following formulas must be proved:

phase commutes: Theorem reachable(s)^Nda(s; t; u) � Nds(DAmap(s);DAmap(t); u)

initial maps: Theorem initial da(s) � initial ds(DAmap(s))
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The lemmas below directly follow from the de�nition of the mapping.

map 1: Lemma DAmap(s):proc(i):healthy = s:proc(i):healthy

map 2: Lemma DAmap(s):proc(i):proc state = s:proc(i):proc state

map 3: Lemma DAmap(s):phase = s:phase

map 4: Lemma DAmap(s):proc(i):mailbox = s:proc(i):mailbox

map 7: Lemma DS:maj working(DAmap(s)) = DA:maj working(s)

8.2 The Proof

The phase commutes theorem must be shown to hold for all four phases. Thus, the proof is

decomposed into four separate cases, each of which is handled by a lemma of the form:

phase com X : Lemma

s:phase = X ^ Nda(s; t; u) � Nds(DAmap(s);DAmap(t); u)

where X is any one of fcompute, broadcast, vote, syncg. The proof of this theorem requires

the expansion of the Nda relation and showing that the resulting formula logically implies

Nds(DAmap(s);DAmap(t); u).

8.2.1 Decomposition Scheme

The proof of each lemma phase com X is facilitated by using a common, general scheme for

each phase that further decomposes the proof by means of four subordinate lemmas. The

general form of these lemmas is as follows:

Lemma 1: s:phase = X ^Nda(s; t; u) � (8 i : NX

da(s; t; i))

Lemma 2: s:phase = X ^NX

da(s; t; i) � NX

ds (DAmap(s);DAmap(t); i)

Lemma 3: s:phase = X ^ DS:maj working(tt) ^ (8 i : NX

ds (ss; tt; i)) �
Nds(ss; tt; u)

Lemma 4: s:phase = X ^Nda(s; t; u) � DS:maj working(DAmap(t))

A few di�erences exist among the lemmas for the four phases, but they adhere to this scheme

fairly closely. The phase com X lemma follows by chaining the four lemmas together:

Nda(s; t; u) � (8 i : NX

da(s; t; i)) �
(8 i : NX

ds(DAmap(s);DAmap(t); i)) � Nds(DAmap(s);DAmap(t); u)

In three of the four cases above, proofs for the lemmas are elementary. The proof of

Lemma 1 follows directly from the de�nition of Nda. Lemma 3 follows directly from the

de�nition of Nds. Lemma 4 follows from the de�nition of Nda, enough hardware and the basic

mapping lemmas.

Futhermore, in three of the four phases, the proof of Lemma 2 is straightforward. For

all but the broadcast phase, Lemma 2 follows from the de�nition of NX

ds , N
X

da, and the basic

mapping lemmas.
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However, in the broadcast phase, Lemma 2 from the scheme above, which is named

com broadcast 2, is a much deeper theorem. The broadcast phase is where the e�ects of

asynchrony are felt; we must show that interprocessor communications are properly received

in the presence of asynchronously operating processors. Without clock synchronization we

would be unable to assert that broadcast data is received. Hence the need to invoke clock

synchronization theory and its attendant reasoning over inequalities of time.

8.2.2 Proof of com broadcast 2

The lemma com broadcast 2 is the most di�cult of the four lemmas for the broadcast phase.
It follows from the de�nition of N b

ds, N
b
da, the basic mapping lemmas and a fairly di�cult

lemma, com broadcast 5:

com broadcast 5: Lemma

reachable(s) ^ Nda(s; t; u) ^ s:phase = broadcast
^ s:proc(i):healthy > 0 ^ broadcast received(s; t; i)

� broadcast received(DAmap(s);DAmap(t); i)

This lemma deals with the main di�erence between the DA level and the DS level|the

timing constraint on the function broadcast received:

broadcast received: function[DAstate;DAstate; processors! bool] =
(� s; t; q : (8 p :
(s:proc(p):healthy > 0

^da rt(s; p; (s:proc(p):lclock)+max comm delay � da rt(t; q; t:proc(q):lclock)
� t:proc(q):mailbox(p) = s:proc(p):mailbox(p)

The timing constraint

da rt(s; p; s:proc(p):lclock) +max comm delay � da rt(t; q; t:proc(q):lclock)

must be discharged in order to show that the DA level implements the DS level. The following
lemma is instrumental to this goal.

ELT: Lemma T2 � T1+ bb ^ (T1 � T 0) ^ (bb � T 0) ^ T2 2 R(sp) ^ T1 2 R(sp)

^ nonfaulty clock(p; sp) ^ nonfaulty clock(q; sp) ^ enough clocks(sp)

� rt
(sp)
p (T2) � rt

(sp)
q (T1) + (1 � �

2
) � jbbj � �

This lemma establishes an important property of timed events in the presence of a fault-

tolerant clock synchronization algorithm and is proved in the next subsection. Suppose that

on processor q an event occurs at T1 according to its own clock and another event occurs on

processor p at time T2 according to its own clock. Then, assuming that the clock times fall

within the current frame and the clocks are working and the system still is safe (i.e. more

than two thirds of the clocks are non-faulty), then the following is true about the real times

of the events:

rt
(sp)
p (T2) � rt

(sp)
q (T1) + (1 � �

2
) � jbbj � �
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where bb = T2 � T1, T1 = s:proc(p):lclock and T2 = t:proc(q):lclock.
If we apply this lemma to the broadcast phase, letting T1 be the time that the sender

loads his outgoing mailbox bin and T2 is the earliest time that the receivers can read their

mailboxes (i.e. at the start of the vote phase), we know that these events are separated in

time by more than (1� �

2
) � jbbj � �.

In this case bb is approximately equal to duration(broadcast). However, since there may

be some variations in the time spent in the compute and broadcast phases on di�erent

processors (i.e. they can drift from the nominal value at a rate less than �), the analysis is a

little tricky. First consider the situation where processor q is sending a message to processor

p during its broadcast phase. Let r be the state at the start of the compute phase, s be the
state at the start of the broadcast phase and t be the state at the start of the vote phase:

r
compute
�! s

broadcast
�! t

Then, let

Rq = the clock time at the start of the compute phase on processor q

Sq = the clock time at the start of the broadcast phase on processor q

Tq = the clock time at the start of the vote phase on processor q

Rp = the clock time at the start of the compute phase on processor p

Sp = the clock time at the start of the broadcast phase on processor p

Tp = the clock time at the start of the vote phase on processor p

This is illustrated in �gure 12. By the de�nition of clock advanced, the following can be

~

. . . . . . . . . . . . . . . . . . .

-

-

message

broadcastcompute

broadcastcompute

processor q:

processor p:

Rq Sq Tq

Rp Sp Tp

Figure 12: Relationship between phase times on di�erent processors

established:

(9 pdurc; pdurb; qdurc; qdurb :
near(pdurc; compute) ^ near(pdurb; broadcast)
^ near(qdurc; compute) ^ near(qdurb; broadcast)
^ Rp = Rq
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^ Sq = Rq+ qdurc
^ Tp = Sq� qdurc+ pdurc+ pdurb))

where near(dur,ph) is given by

near(dur,ph) = (1� �) � duration(ph) � dur � (1 + �) � duration(ph))

This result depends upon a critical invariant of the system:

(8 p; q : s:phase = compute ^
nonfaulty clock(p; s:sync period) ^ nonfaulty clock(q; s:sync period)
� s:proc(p):lclock = s:proc(q):lclock)

given that the state s is reachable(s). This invariant exists in the system because of the

use of an interrupt timer to initiate the start of a frame on each of the processors at the

pre-determined times i� frame time. Using the de�nition of R(i) and the axioms pos durations
and all durations, we obtain:

nonfaulty clock(p; i) ^ nonfaulty clock(q; i)
� Sq 2 R(i) ^ Tp 2 R(i)

^ Tp � Sq+ duration(broadcast)
� 2 � � � duration(compute)� � � duration(broadcast)

where i is the current synchronization period (i.e. i = r.sync period = s.sync period =

t.sync period). We now have a relationship between the clock time that the message was

sent and the clock time that it was received in a form appropriate for application of the ELT
theorem. In other words, T2 = Tp; T1 = Sq and bb = pdurc � qdurc + pdurb. Thus, we

can convert the relationship between the events expressed in clock times to a relationship

between the real times of these events:

rt(i)p (Tp) � rt(i)q (Sq) + (1� �

2
) � jduration(broadcast)� Epsij � �

where Epsi = 2�� �duration(compute)+� �duration(broadcast). Using the broadcast duration
implementation axiom:

broadcast duration: Axiom
duration(broadcast) � (1 � �

2
)� 2 � � � duration(compute)

� � � duration(broadcast))� � � max comm delay

we have:

rt(i)p (Tp) � rt(i)q (Sq) +max comm delay

Using the da rt lem lemma:

da rt(t; q;Tq) >= da rt(s; p;Sq) +max comm delay

This will discharge the premise of broadcast received. Thus,
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com broadcast 5: Lemma

reachable(s) ^ Nda(s; t; u) ^ s:phase = broadcast
^ s:proc(p):healthy > 0 ^ broadcast received(s; t; p)

� broadcast received(DAmap(s);DAmap(t); p)

Of course there are several technicalities such as the reachable(da) premise that must be dis-

charged in order to apply the da rt lem lemma and the other state invariants and establishing

that s:proc(p):healthy > 0 � nonfaulty clock(p; s:sync period).

Proof of ELT Lemma: In this section we prove,

Lemma 1 (earliest later time Lemma) T2 = T1 + BB
^ (T1 � T 0) ^ (BB � T 0) ^ nonfaulty clock(p; i) ^ nonfaulty clock(q; i)
^ enough clocks(i) ^ T2 2 R(i) ^ T1 2 R(i)

� rt(i)p (T2) � rt(i)q (T1) + (1 � �

2
) � jBBj � �

from which the ELT lemma immediately follows.

Proof. This lemma depends primarily upon the de�nition of a good clock and the synchro-

nization theorem (i.e. sync thm). The good clock de�nition yields:

goodclock(q; T 0; T1 + BB) ^ (T1 � T 0) ^ (BB � T 0)

� (1� �

2
) � jBBj � cq(T1 + BB)� cq(T1)

^ cq(T1 + BB) � cq(T1) � (1 + �

2
) � jBBj

Note that the de�nition of a good clock is de�ned in terms of the uncorrected clocks, cp(T ).

Using the de�nition of rt, we can rewrite the �rst formula as:

Lemma goodclock(q; T 0; T1 + Corr(i)q + BB)

^ (T1 � T 0) ^ (T1 + Corr(i)q � T 0) ^ (BB � T 0)

� (1� �

2
) � jBBj � rt(i)q (T1 + BB)� rt(i)q (T1)

^ rt(i)q (T1 + BB)� rt(i)q (T1) � (1 + �

2
) � jBBj

and obtain a formula in terms of the function rt.
The sync thm theorem gives us:

enough clocks(i) ^ nonfaulty clock(p; i) ^ nonfaulty clock(q; i) ^ T 2 R(i)

� �� � rt(i)p (T )� rt(i)q (T ) � �

Combining the previous two formulas and substituting T2 for T in sync thm, we obtain:

T2 = T1 + BB ^ (T1 � T 0) ^ (T1 + Corr(i)q � T 0) ^ (BB � T 0) ^ T2 2 R(i)

^enough clocks(i)^goodclock(q; T 0; T1Corr
(i)
q +BB)^nonfaulty clock(p; i)^

nonfaulty clock(q; i)
� rt(i)p (T2) � rt(i)q (T1) + (1� �

2
) � jBBj � �

From the de�nition of nonfaulty and goodclock, we have:

T1 + BB � T (i+1) ^ nonfaulty clock(q; i)
� goodclock(q; T 0; T1 + Corr(i)q + BB)
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Using these last two results we have:

T2 = T1 + BB ^ T2 � T (i+1) ^ (T1 � T 0) ^ (T1 + Corr(i)q � T 0) ^ (BB � T 0)

^ enough clocks(i) ^ nonfaulty clock(p; i) ^ nonfaulty clock(q; i) ^ T2 2 R(i)

� rt(i)p (T2) � rt(i)q (T1) + (1� �

2
) � jBBj � �

Then from the de�nition of R(i), T (i) and the fact that Corr(0)q = 0, we have

ft11: Lemma T2 = T1 + BB ^ (T1 � T 0) ^ (T1 + Corr(i)q � T 0) ^ (BB � T 0)

^ enough clocks(i) ^ nonfaulty clock(p; i) ^ nonfaulty clock(q; i) ^ T2 2 R(i)

� rt(i)p (T2) � rt(i)q (T1) + (1� �

2
) � jBBj � �

Using the adj always pos theorem from [8], we obtain

ft12: Lemma T1 2 R(i) � (T1 + Corr(i)q � T 0)

The key lemma follows immediately from the last two formulas, (ft11 and ft12).

9 Implementation Considerations

Although many RCP design decisions have yet to be made, there are a number of implemen-

tation issues that need to be considered early. Some of these have emerged as consequences

of the formalization e�ort completed in Phase 2. Others are the result of preliminary investi-

gations into the needs of implementations that can satisfy the RCP speci�cations. Following

is a discussion of these issues and available options.

9.1 Restrictions Imposed by the DA Model

Recall that the DA extended state machine model described in section 2.4 recognized four

di�erent classes of state transition: L, B, R, C. Although each is used for a di�erent phase

of the frame, the transition types were introduced because operation restrictions must be

imposed on implementations to correctly realize the DA speci�cations. Failure to satisfy

these restrictions can render an implementation at odds with the underlying execution model,

where shared data objects are subject to the problems of concurrency. The set of constraints

on the DA model's implementation concerns possible concurrent accesses to the mailboxes.

While a broadcast send operation is in progress, the receivers' mailbox values are unde-

�ned. If the operation is allowed su�cient time to complete, the mailbox values will match

the original values sent. If insu�cient time is allowed, or a broadcast operation is begun

immediately following the current one, the �nal mailbox value cannot be assured. Further-

more, we make the additional restriction that all other uses of the mailbox be limited to

read-only accesses. This provides a simple su�cient condition for noninterfering use of the

mailboxes, thereby avoiding more complex mutual exclusion restrictions.

Operation Restrictions. Let s and t be successive DA states, i be the proces-

sor with the earliest value of ci(s(i):lclock), and j be the processor with the latest
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value of cj(t(j):lclock). If s corresponds to a broadcast (B) operation, all proces-
sors must have completed the previous operation of type R by time ci(s(i):lclock),
and the next operation of type B can begin no earlier than time cj(t(j):lclock).
No processor may write to its mailbox during an operation of type B or R.

By introducing a prescribed discipline on the use of mailboxes, we ensure that the axiom

describing the net e�ect of broadcast communication can be legitimately used in the DA
proof. Although the restrictions are expressed in terms of real time inequalities over all

processors' clocks, it is possible to derive su�cient conditions that satisfy the restrictions and

can be established from local processor speci�cations only, assuming a clock synchronization

mechanism is in place.

9.2 Processor Scheduling

The DAmodel of the RCP deals with the timing and coordination of the replicated processors

in a fairly complete manner. The model de�nes in detail the functionality of the system with

regard to the activities that are necessary to ensure its fault-masking and transient recovery

capability. Nevertheless, the delineation of the task execution process on each local processor

has not been elaborated in any more detail than in the US model. This was done deliberately

in order to obtain as general a speci�cation as possible. Thus, the 4-level hierarchy presented

in this paper could be further re�ned into a set of entirely di�erent kinds of implementations.

They could di�er drastically in the types of task scheduling that are utilized as well as the

type of hardware or software used.

Nevertheless, one aspect of scheduling needs to be carefully controlled, namely the basic

frame structure. The RCP speci�cations were developed with a very crisp execution model

in mind regarding the basic timing of a frame and its major parts. We assume the existence

of one or more nonmaskable hardware interrupts, triggered by the clock subsystem, that are

used to e�ect the transition from one frame to the next and one major phase to the next.

As a minimum, the following transitions must be triggered by timer interrupts or an equally

strong hardware mechanism.

� Start of frame. The last portion of a frame is reserved for clock synchronization

activities. This includes not only executing the clock synchronization functions, but

also reserving some dead time to be sacri�ced when clock adjustments cause local clock

time discontinuities. An interrupt is set to �re at the proper value of clock time so

that all processors begin the new frame with the same local clock reading.

� Beginning of vote phase. After waiting for the completion of broadcast communi-

cation from other processors, the vote phase is begun to selectively restore portions of

the computation state. Also needing to be recovered are any control state variables

used by the operating system. If a transient fault occurs, recovery cannot begin until

the control state is �rst restored through voting. However, a processor operating after

a transient fault may be executing with a corrupted memory state. The only way to

ensure that corrupted memory does not prevent the eventual recovery of control state

information is to force the vote to happen through a nonmaskable interrupt.
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The use of timer interrupts are highly desirable in other situations, but those listed above

are considered essential.

Scheduling of applications tasks is an area where the implementation retains some 
ex-

ibility owing to our use of a general fault-tolerant computing model in the US and RS
speci�cations. Often it is considered desirable to achieve some type of schedule diversity

across processors as a means of gaining more transient fault immunity. A limited way of

accomplishing this is available under the current RCP design. Since the speci�cations only

state what must be true after all tasks have been executed within a frame, it is possible to

juggle the order of tasks within each frame to implement diversity. For example, if N tasks

are scheduled in a particular frame, each processor may execute them in a di�erent order

up to the limits of data dependency among tasks. It is also possible to introduce di�erent

spreads of slack time, dummy tasks, etc. to achieve similar e�ects.

9.3 Hardware Protection Features

Correct recovery of state information after a transient fault has been formalized in the RS
to US proof. Transient recovery of state information occurs gradually, one cell at a time.

Consequently, depending on the voting pattern used, some tasks will be executing in the

presence of erroneous state information. Implicit in the RS speci�cations is that computation

of task outputs is not subject to interference by other tasks executing with erroneous data

inputs. In the speci�cations, this is due simply to the use of a functional representation of

the e�ects of task execution.

Nonetheless, in a real processor a program in execution can interfere with another unless

hardware protection mechanisms are in place. To see why this is so, suppose, for instance,

that task T1 is followed by task T2 in a particular frame and neither's output is voted during

that frame. Suppose further that in the transient fault recovery scheme, T2's inputs come

from recently voted cells while T1's do not. Thus, we expect T2's cell to be recovered after this

frame. After a transient fault, T1 may be executing instructions on erroneous data, possibly

overwriting recovered information such as that required by T2. This would invalidate our

assumption that T2's state is recovered at the end of the frame.

In a similar manner, interference can be caused in the time domain as well as the data

domain. In the example above, if T1's erroneous input causes it to run longer than its upper

execution time bound, T2 may not get to execute in this frame. Again, this would result in

our assumptions about T2's output being invalid. Therefore, hardware protection features

are required to prevent both kinds of interference in a system that attempts to recover state

information selectively.

There are several well-known hardware techniques for providing this type of protection.

� Memory protection. Hardware write protection devices are found on many modern

computer architectures. What RCP requires is less than a full-blown memory manage-

ment unit (MMU). All that is necessary is to be able to prevent a task in execution

from writing into memory areas for which the operating system has not given explicit

write permission. The ability to give a task write access to a small set of physical

memory regions is su�cient. Generating hardware exceptions such as traps on illicit

write attempts is desirable but not essential.
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� Watch-dog timers. Timer interrupts or special-purpose timing logic will be required

to prevent a task from consuming more than its allotted amount of execution time.

When a watch-dog timer is triggered, the operating system need only dispatch the

next task on the schedule. The actual hardware used to carry out this timing function

needs to have adequate resolution and be distinct from the timer interrupts used to

signal the end-of-frame and start-of-voting events.

� Privileged Operating Modes. To protect the protection mechanisms, it is usually

necessary for a processor to have at least one privileged execution domain. Processors

typically provide at least a user domain and a (privileged) supervisor domain to im-

plement conventional operating system designs. In RCP, we need these features so the

tasks cannot accidentally change or disable the memory write protection or watch-dog

timer functions. There may be other uses for privileged mode as well.

It is important to realize that use of these features may be obviated in special cases. If

su�ciently frequent voting is used, for example, it may not be necessary to provide these

features as long as a task is always executing with valid data as input.

9.4 Voting Mechanisms

Exact-match voting of state information exchanged among processors is usually envisioned

as applying the majority function to mailbox values. Note, however, that the voting function

fv, described in section 3.3, is unspeci�ed and need not be based on the majority operation.

Other types of voting may be used provided that the transient recovery axioms of section 3.5.2

are still true.

A desirable alternative to majority voting is plurality voting. If the values subject to

voting are fa; a; b; cg, for example, a majority does not exist, but a plurality does, namely

fa; ag. The reason this can be valuable is that during a massive transient fault that a�ects

more than a majority of processors, the Maximum Fault Assumption no longer holds and

transient fault recovery is not assured by the proofs previously described. However, the

likelihood is that the a�ected processors will not exhibit exactly the same errors. If a

minority of processors is still working, it is likely that the values produced by the replicated

processors will appear something like the example fa; a; b; cg. Hence, plurality voting has a

good chance of recovering the correct state in spite of the absence of a working majority.

This problem has been studied by Miner and Caldwell [26]. They showed that the

substitution of plurality voting for majority voting can be used to produce identical results

as long as the Maximum Fault Assumption holds:

maj exists(s) � maj(s) = plur(s)

By using an implementation based on plurality voting, we enjoy the same provable behavior

when the Maximum Fault Assumption holds, and we enjoy added transient fault immunity

in the rare case that it is violated. All that is necessary to achieve this is to show that the

choice of function for fv meets the requirements of the transient recovery axioms.
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10 Future Work

There are four main areas where further work may be pro�table.

1. Development of a still more detailed speci�cation and veri�cation that it meets the DA
speci�cation.

2. Development of task scheduling/voting strategies that satisfy the axioms of the US
model.

3. More detailed speci�cation of the behavior of the actuator outputs.

4. Development of a detailed reliability model.

10.1 Further Re�nement

Although the DA speci�cation is a fairly detailed design of the system-wide behavior of the

RCP, there is very little implementation detail about what occurs locally on each processor.

The next level of the speci�cation hierarchy, the local processor LP speci�cation will de�ne

the data structures and algorithms to be implemented on each local processor.

At some point the design must be implemented on hardware. It is anticipated that both

standard hardware such as microprocessors and memory management units will be required

as well as special hardware to implement the clock synchronization and Byzantine agreement

functions. In the same way that this work capitalized on the work done elsewhere in clock

synchronization, the LP speci�cation will build on the work being performed under contract

to NASA Langley in hardware veri�cation.

NASA Langley has awarded three contracts speci�cally devoted to formal methods (from

the competitive NASA RFP 1-22-9130.0238). The selected contractors were SRI Interna-

tional, Computational Logic Inc., and Odyssey Research Associates. Another task-assignment

contract with Boeing Military Aircraft Company (BMAC) is being used to explore formal

methods as well. Through this contract BMAC is funding research at the University of

California at Davis and California Polytechnic State University to assist them in the use of

formal methods in aerospace applications. The e�orts are roughly divided as follows:

SRI: Clock synchronization, operating system

CLI: Byzantine Agreement Circuits, clock synchronization

ORA: Byzantine Agreement Circuits, applications

BMAC: Hardware Veri�cation, formal requirements analysis

The DA speci�cation critically depended upon a clock synchronization property. Previous

work by SRI had veri�ed that the ICA algorithm meets this property. Ongoing work at SRI

is directed at implementing a synchronization algorithm in hardware verifying it. This will

lead to the veri�cation hierarchy shown in �gure 13.

Implicit in the RS, DS and DA models is the assumption that it is possible to distribute

single source information such as sensor data to the redundant processors in a consistent man-
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Figure 13: Clock Synchronization Hierarchy

ner even in the presence of faults. This is the classic Byzantine Generals problem [18].13 CLI

is investigating the formal veri�cation of such algorithms and their implementation. They

have formally veri�ed the original Pease, Shostak, and Lamport version of this algorithm

using the Boyer Moore theorem prover [27]. They have also implemented this algorithm

down to the register-transfer level and demonstrated that it implements the mathematical

algorithm [28]. Future work will concentrate on tying this work together with their veri�ed

microprocessor, the FM8502 [29].

ORA has also been investigating the formal veri�cation of Byzantine Generals algorithms.

They have focused on the practical implementation of a Byzantine-resilient communications

mechanism between Mini-Cayuga micro-processors [30]. The Mini-Cayuga is a small but

formally veri�ed microprocessor developed by ORA. It is a research prototype and has not

been fabricated. This communications circuitry could serve as a foundation for the RCP

architecture. It was designed assuming that the underlying processors were synchronized

(say by a clock synchronization circuit). The issues involved with connecting the Byzantine

communications circuit with a clock synchronization circuit and verifying the combination

have not yet been explored.

Boeing Military Aircraft Company and U. C. Davis have been sponsored by NASA,

Langley to apply formal methods to the design of conventional hardware devices. Formal

Veri�cation of the following circuits is currently under investigation:

� a 
oating-point coprocessor similar to the Intel 8087 (but smaller) [31, 32].

� a DMA controller similar to the Intel 8237A (but smaller) [33].

� microprocessors in HOL (small) [34, 35, 36].

� a memory management unit [37, 38].

13Fault-tolerant systems, although internally redundant, must deal with single-source information from
the external world. For example, a 
ight control system is built around the notion of feedback from physical
sensors such as accelerometers, position sensors, pressure sensors, etc. Although these can be replicated
(and they usually are), the replicates do not produce identical results. In order to use bit-by-bit majority
voting all of the computational replicates must operate on identical input data. Thus, the sensor values (the
complete redundant suite) must be distributed to each processor in a manner that guarantees all working
processors receive exactly the same value even in the presence of some faulty processors.
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The team is currently investigating the veri�cation of a composed set of veri�ed hardware

devices [39, 40, 41]

Researchers at NASA Langley have begun a new e�ort on a hardware clock synchro-

nization technique that can serve as a foundation for the RCP architecture. The method,

which is based on the Fault-Tolerant Midpoint algorithm [42], is aimed at a fully independent

hardware implementation. The primary goals of this work are full mechanical veri�cation,

transient fault recovery, and an initialization scheme that provides recovery from large tran-

sient upsets.

10.2 Task Scheduling and Voting

The Phase 1 report described a scheduling system that was based upon a deterministic table.

In the models presented in this paper, this is no longer strictly required although such an

approach clearly �ts within the axioms presented in the US model. However, it is conceivable

that more sophisticated scheduling strategies could also be shown to conform.

10.3 Actuator Outputs

It is important not only that the replicated outputs sent to the actuators (on separate wires)

are identical but that they appear within some bounded time of each other. Although this

bound may not be very small, it is still incumbent upon the veri�cation activity that a bound

be mathematically established.

10.4 Development of a Detailed Reliability Model

In the Phase 1 paper, a simple reliability model of the RCP system was developed that

demonstrated that the speed at which one must remove the e�ects of a transient fault is

not very critical. In other words, 
ushing the e�ects of a transient fault over an extended

period of time did not signi�cantly decrease the reliability of the system as compared to

extremely fast removal. In this model, a fault anywhere in the processor was su�cient to

render the entire processor faulty. Clearly, in a fully developed RCP, there will be more

than one fault-isolation containment region per processor. The most likely arrangement is to

have a separate fault-containment region for the clocking system and one for the Byzantine

agreement circuitry.

11 Concluding Remarks

In this paper a hierarchical speci�cation of a reliable computing platform (RCP) has been

developed. The top level speci�cation is extremely general and should serve as a model for

many fault-tolerant system designs. The successive re�nements in the lower levels of abstrac-

tion introduce, �rst, processor replication and voting, second interprocess communication by

use of dedicated mailboxes and �nally, the asynchrony due to separate clocks in the system.
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Although the �rst phase of this work was accomplished without the use of an automated

theorem prover, we found the use of the Ehdm system to be bene�cial to this second phase

of work for several reasons.

� The amount of detail in the lower level models is signi�cantly greater than in the upper

level models. It became extremely di�cult to keep up with everything using pencil

and paper.

� The strictness of the Ehdm language (i.e. its requirement to precisely de�ne all vari-

ables and functions, etc.) forced us to elaborate the design more carefully.

� Most of the proofs were not very deep but had to deal with large amounts of detail.

Without a mechanical proof checker, it would be far too easy to overlook a 
aw in the

proofs.

� The proof support environment of Ehdm, although overly strict in some cases, provided

much assistance in assuring us that our proof chains were complete and that we had

not overlooked some unproven lemmas.

� The decision procedures of Ehdm for linear arithmetic and propositional calculus were

valuable in that they relieved us of the need to reduce many formulas to primitive

axioms of arithmetic. Especially useful was its ability to reason about inequalities.

Key features of the work completed during Phase 2 and improvements over the results

of Phase 1 include the following.

� Speci�cation of redundancy management and the transient fault recovery scheme uses

a very general model of fault-tolerant computing similar to one proposed by Rushby

[20, 21].

� Speci�cation of the asynchronous layer design uses modeling techniques based on a

time-extended state machine approach. This method allows us to build on previous

work that formalized clock synchronization mechanisms and their properties.

� Formulation of the RCP speci�cations is based on a straightforward Maximum Fault

Assumption that provides a clean interface to the realm of probabilistic reliability

models. It is only necessary to determine the probability of having a majority of

working processors and a two-thirds majority of nonfaulty clocks.

� A four-layer tier of speci�cations has been completely proved to the standards of rigor

of the Ehdm mechanical proof system. All proofs can be run on a Sun SPARCstation

in less than one hour.

� Important constraints on lower level design and implementation constructs have been

identi�ed and investigated.

Based on the results obtained thus far, work will continue to a Phase 3 e�ort, which

will concentrate on completing design formalizations and develop the techniques needed to

produce veri�ed implementations of RCP architectures.
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Index

The following index identi�es where each

symbol or identi�er is introduced in the

main body of the report. Multiple entries

appear for those names used in more than

one module in the Ehdm speci�cations.

C(t) 33
T 2 R(i) 33
T (i) 33
�(i�1)

p 33

�(i)
qp 34

� 34
� 34
�0 34
� 34
� 39
� 33
c(T ) 33
fk 19
fs 15
ft 19
fv 15
m 34
rt(i)(T ) 33
rtp 33
Nda 38
N b

da 40
N c

da 38
N s

da 40
N v

da 40
Nds 26
N b

ds 27
N c

ds 27
N s

ds 28
N v

ds 28
Nrs 15
Nus 14
A0 34
Corr 33
DA 9
DAmap 42

DAstate 36
DS 9
DSmap 29
DSstate 25
ELT 44
MB 13
MBvec 13
Pstate 13
RS 8
RSmap 22
RSstate 15
S1 34
S1A 35
S2 34
Theorem 1 35
Theorem 2 35
US 8
all durations 39
allowable faults 16
broadcast duration 39
broadcast duration2 39
broadcast received 27
broadcast received 38
cell 18
cell recovered 20
cell recovery 23
cell state 18
clock advanced 39
com broadcast 2 44
com broadcast 5 44
components equal 20
consensus prop 24
control recovered 20
control recovery 23
control state 18
da proc state 36
da proc state 36
da rt 36
da rt lem 37
dep 19
dep agree 19
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dep recovery 20
ds proc array 25
ds proc state 25
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enough clocks 35
enough hardware 38
frame N ds 26
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frame commutes 29
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full recovery 20
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good values sent 16
initial Corr 33
initial da 41
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initial maps 42
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